To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter covers principal component analysis and low-rank models, which are popular techniques to process high-dimensional datasets with many features. We begin by defining the mean of random vectors and random matrices. Then, we introduce the covariance matrix which encodes the variance of any linear combination of the entries in a random vector, and explain how to estimate it from data. We model the geographic location of Canadian cities as a running example. Next, we present principal component analysis (PCA), a method to extract the directions of maximum variance in a dataset. We explain how to use PCA to find optimal low-dimensional representations of high-dimensional data and apply it to a dataset of human faces. Then, we introduce low-rank models for matrix-valued data and describe how to fit them using the singular-value decomposition. We show that this approach is able to automatically identify meaningful patterns in real-world weather data. Finally, we explain how to estimate missing entries in a matrix under a low-rank assumption and apply this methodology to predict movie ratings via collaborative filtering.
This chapter introduces continuous random variables which enable us to model uncertain continuous quantities. We again begin with a formal definition, but quickly move on to describe how to manipulate continuous random variables in practice. We define the cumulative distribution function and quantiles (including the median) and explain how to estimate them from data. We then introduce the concept of probability density and describe its main properties. We present two approaches to obtain nonparametric models of probability densities from data: The histogram and kernel density estimation. Next, we define two celebrated continuous parametric distributions – the exponential and the Gaussian – and show how to fit them to data using maximum-likelihood estimation. We use these distributions to model the interarrival time of calls at a call center, and height in a population, respectively. Finally, we discuss how to simulate continuous random variables via inverse transform sampling.
This chapter introduces probability. We begin with an informal definition which enables us to build intuition about the properties of probability. Then, we present a more rigorous definition, based on the mathematical framework of probability spaces. Next, we describe conditional probability, a concept that makes it possible to update probabilities when additional information is revealed. In our first encounter with statistics, we explain how to estimate probabilities and conditional probabilities from data, as illustrated by an analysis of votes in the United States Congress. Building upon the concept of conditional probability, we define independence and conditional independence, which are critical concepts in probabilistic modeling. The chapter ends with a surprising twist: In practice, probabilities are often impossible to compute analytically! Fortunately, the Monte Carlo method provides a pragmatic solution to this challenge, allowing us to approximate probabilities very accurately using computer simulations. We apply w 3 × 3 basketball tournament from the 2020 Tokyo Olympics.