To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
from
Part II
-
Wireless Networks for Machine Learning
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
from
Part II
-
Wireless Networks for Machine Learning
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
from
Part II
-
Wireless Networks for Machine Learning
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
from
Part I
-
Machine Learning for Wireless Networks
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
from
Part II
-
Wireless Networks for Machine Learning
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
from
Part I
-
Machine Learning for Wireless Networks
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
Edited by
Yonina C. Eldar, Weizmann Institute of Science, Israel,Andrea Goldsmith, Princeton University, New Jersey,Deniz Gündüz, Imperial College of Science, Technology and Medicine, London,H. Vincent Poor, Princeton University, New Jersey
This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance – simulation and sampling, as well as experimental design and data collection – that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.
This chapter studies the problem of (unsupervised) community detection on large random graphs, with a focus on the dense graph setting for both stochastic block model and its degree-corrected variant. Discussion on sparse graphs are made, however, via a stats-physics-inspired heuristic approach.
This chapter covers large neural networks with random weights, in both feed-forward and recurrent settings. While being rather different from modern deep neural networks, these preliminary results shed new light on the interplay between data, network structure, and nonlinear neurons, leading to the somewhat surprising double descent phenomenon. The impact of gradient-based optimization method on the resulting network and more advanced consideration of deep networks are also discussed.
In this chapter, examples of concrete machine learning and statistical inference/estimation problems involving covariance matrix-based estimators are discussed. This includes the generalized likelihood ratio test, the popular linear and quadratic discriminant analysis, subspace methods such as MUSIC for direction of arrival estimation, covariance distance estimation, as well as robust covariance estimation.
This chapter discusses the generalized linear classifier that results from convex optimization problem and takes in general nonexplicit form. Random matrix theory is combined with leave-one-out arguments to handle the technical difficulty due to implicity. Again, counterintuitive phenomena arise in popular machine learning methods such as logistic regression or SMV in the large-dimensional setting, a well-defined solution may not even exist, and if it does, it behaves dramatically from its small-dimensional counterpart.