To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A programming course should concentrate as much as possible on a program's logical structure and design rather than simply show how to write code. The Functional Approach to Programming achieves this aim because logical concepts are evident and programs are transparent so can be written quickly and cleanly. In this book the authors emphasise the notions of function and function application which relate programming to familiar concepts from mathematics and logic. They introduce functional programming via examples but also explain what programs compute and how to reason about them. They show how the ideas can be implemented in the Caml language, a dialect of the ML family, and give examples of how complex programs from a variety of areas (such as arithmetic, tree algorithms, graph algorithms, text parsing and geometry) can be developed in close agreement with their specifications. Many exercises and examples are included throughout the book; solutions are also available.
This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory. which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specialising in category theory.
This textbook is an introduction to the design and writing of computer programs. It leads the reader through all the stages of program construction from the original specifications through to the final program. The formal verification of intermediate versions of the program is studied in considerable detail. The authors show how, given the formal specification of a program, data structure and program structure diagrams are drawn and then converted into a procedural program in a program design language (PDL). They demonstrate the conversion of PDL into a variety of real programming languages including Pascal, FORTRAN, COBOL, and Assembler. The book also includes chapters on abstract data types, analysing existing programs, and a small case study. First-year undergraduates in computer science and graduates taking courses in computing will find this a comprehensive introduction to program construction.
For undergraduate and beginning graduate students, this textbook explains and examines the central concepts used in modern programming languages, such as functions, types, memory management, and control. The book is unique in its comprehensive presentation and comparison of major object-oriented programming languages. Separate chapters examine the history of objects, Simula and Smalltalk, and the prominent languages C++ and Java. The author presents foundational topics, such as lambda calculus and denotational semantics, in an easy-to-read, informal style, focusing on the main insights provided by these theories. Advanced topics include concurrency, concurrent object-oriented programming, program components, and inter-language interoperability. A chapter on logic programming illustrates the importance of specialized programming methods for certain kinds of problems. This book will give the reader a better understanding of the issues and tradeoffs that arise in programming language design, and a better appreciation of the advantages and pitfalls of the programming languages they use.
Fundamentals of OOP and Data Structures in Java is a text for an introductory course on classical data structures. Part One of the book presents the basic principles of Object-Oriented Programming (OOP) and Graphical User Interface (GUI) programming with Java as the example language. Part Two introduces each of the major data structures with supporting, GUI-based laboratory programs designed to reinforce the basic concepts and principles of the text. These laboratories allow the reader to explore and experiment with the properties of each data structure. All source code for the laboratories is available on the web. By integrating the principles of OOP and GUI programming, this book takes the unique path of presenting the fundamental issues of data structures within the context of paradigms that are essential to today's professional software developer. The authors assume the reader has only an elementary understanding of Java and no experience with OOP.
This new, expanded textbook describes all phases of a modern compiler: lexical analysis, parsing, abstract syntax, semantic actions, intermediate representations, instruction selection via tree matching, dataflow analysis, graph-coloring register allocation, and runtime systems. It includes good coverage of current techniques in code generation and register allocation, as well as functional and object-oriented languages, that are missing from most books. In addition, more advanced chapters are now included so that it can be used as the basis for a two-semester or graduate course. The most accepted and successful techniques are described in a concise way, rather than as an exhaustive catalog of every possible variant. Detailed descriptions of the interfaces between modules of a compiler are illustrated with actual C header files. The first part of the book, Fundamentals of Compilation, is suitable for a one-semester first course in compiler design. The second part, Advanced Topics, which includes the advanced chapters, covers the compilation of object-oriented and functional languages, garbage collection, loop optimizations, SSA form, loop scheduling, and optimization for cache-memory hierarchies.