To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This essential book describes the mathematical formulations and subsequent computer simulations required to accurately project the trajectory of spacecraft and rockets in space, using the formalism of optimal control for minimum-time transfer in general elliptic orbit. The material will aid research students in aerospace engineering, as well as practitioners in the field of spaceflight dynamics, in developing simulation software to carry out trade studies useful in vehicle and mission design. It will teach readers to develop flight software for operational applications in autonomous mode, so to actually transfer space vehicles from one orbit to another. The practical, real-life applications discussed will give readers a clear understanding of the mathematics of orbit transfer, allow them to develop their own operational software to fly missions, and to use the contents as a research tool to carry out even more complex analyses.