To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chemical engineering is the field of applied science that employs physical, chemical, and biochemical rate processes for the betterment of humanity. This is a sweeping statement, and it contains two essential concepts: rate processes and betterment of humanity. The second is straightforward and is at the heart of all engineering. The engineer designs processes and tangible objects that meet the real or perceived needs of the populace. Some civil engineers design bridges. Some mechanical engineers design engines. Some electrical engineers design power systems. The popular perception of the chemical engineer is someone who designs and operates processes for the production of chemicals and petrochemicals. This is an historically accurate (if incomplete) image, but it describes only a small fraction of the chemical engineers of the early twenty-first century.
Chemical engineering is the field of applied science that employs physical, chemical, and biochemical rate processes for the betterment of humanity.
Let us turn first to the concept of rate processes, which is the defining paradigm of chemical engineering, and consider an example. Everyone is familiar with the notion that medication taken orally must pass through the digestive system and across membranes into the bloodstream, after which it must be transported to the relevant location in the body (a tumor, a bacterial infection, etc.) where it binds to a receptor or reacts chemically. The residual medication is transported to an organ, where it is metabolized, and the metabolic products are transported across still more membranes and excreted from the body, perhaps in the urine.
Biotechnology is a major component of modern chemical engineering, and biotechnology appears to many observers to be a new thrust; yet, as noted in Chapter 1, biochemical engineering has been an essential part of chemical engineering since the development of the modern profession in the early part of the twentieth century. One important aspect of biotechnology, in fact its most traditional component, is the use of microorganisms to effect chemical change. We cited the microbiological production of acetone and penicillin as two classic examples in Chapter 1.
In terms of annual throughput, the activated sludge process for wastewater treatment is by far the most widely used biochemical process in the world, and it provides a useful framework for discussing some interesting features of bioreactor design and performance. The entire process flowsheet is shown schematically in Figure 8.1. The wastewater feed contains organic materials, commonly measured in toto as biological oxygen demand (BOD), that are used as nutrients by microorganisms; the organisms produce water and CO2 as metabolic products. The primary settler is there to remove large objects. The heart of the process is the aeration basin; this is a reactor in which a suspension of microorganisms in porous flocs is brought into contact with the BOD. The microorganisms are aerobic, meaning that they require oxygen for metabolism, so air or enriched air is added to keep the oxygen concentration in the water above a critical level of about 2 g/m3 (2 ppm).
Most chemical reactions are limited by equilibrium, and in many cases the equilibrium constant is such that the conversion to the desired product is too small to be economical. Doing “better than equilibrium” is one of the primary challenges in chemical engineering design. The general idea is obvious: The reaction should be carried out in the absence of product, so that the reverse reaction cannot proceed. Implementation is not so obvious, which is why this is a primary challenge.
The most interesting approach to overcoming equilibrium, which has been successful in many cases, is to design a system in which reaction and product separation take place simultaneously. In that way, the product is removed from the reactor and cannot participate in the reverse reaction. The inspiration for this idea may come from the biological cell, in which the reaction sites are enclosed within the cell membrane, which is permeable to reaction products that are intended for use outside the cell. The two most common manifestations outside nature are the membrane reactor, which mimics the cellular process, and reactive distillation, in which the reaction takes place in a distillation column. A proper treatment of distillation requires inclusion of the energy balance and the notion of vapor-liquid equilibrium, which is typically addressed in a subsequent course in thermodynamics, so we will not examine reactive distillation here. The membrane reactor is accessible to us now, however, and nicely illustrates the concept.
Many physicochemical systems consist of two or more phases in intimate contact. We have already considered one such system in Chapter 8, where we noted that the bioreactor contains flocs of microorganisms suspended in an aqueous phase, together with air bubbles that provide oxygen. In that case, we made the approximation that we could treat the system as though it were one continuous phase, a process known as homogenization. We did the same for the CO oxidation reactor with finely dispersed catalyst. Homogenization works when all microstructural length scales are so small that the phenomena occurring in the various phases can be averaged together over a continuum length scale that is still very small relative to the macroscopic size of the system, in which case any time scales associated with transport within the microstructure are negligible relative to overall system scales. In many multiphase cases, however, the length scales are such that we must directly address the multiphase nature of the system and the concomitant transport of mass and energy between the phases.
The focus of this chapter will be on the foundations of interfacial mass transfer of a component species between the phases and the approach to an equilibrium distribution. The following chapter will address some of the processing issues that arise. As a preface to the analysis, however, it is useful to begin with a brief classification of various types of two-phase systems that may be encountered in practice.
The chemical reactor is the heart of most industrial processes, although the reactor may represent only about 10 percent of the total capital cost; this is because the output from the reactor defines everything else that must be done downstream, particularly the separation processes. Similarly, if we wish to think about cellular rather than industrial processes, it is the chemical reactions that enable the cell or the organ to carry out its essential functions. We saw in Chapters 7 through 9 how a chemical reactor is integrated into simple processes, and we explored economic issues such as the trade-off between capital and operating costs. That discussion was limited, however, because we assumed in every case that the rate constants were fixed numbers. In doing so, we ignored one of the “handles” that the chemical engineer – or, in the case of an organism, evolution – has available to promote efficiency. Chemical reaction rates are highly temperature dependent, and precise temperature control can be critical in both the design and functioning of a reactor.
Chemical reaction engineering is a broad subject, and it typically occupies at least one full course in an undergraduate chemical engineering curriculum. We introduce some basic ideas here for completeness, but we are only touching on one of the foundations of the chemical engineering profession. We restrict ourselves throughout this chapter to liquid systems, as before, in order to simplify some of the analysis while retaining the essential features, and we address only well-mixed reactor configurations.
Engineering is ultimately about making things for the benefit of society. We typically use the term design for the set of instructions by which a craftsperson can turn an idea into an object, and that meaning of the word carries over to the engineering activity of making tangible objects. Design has an additional meaning for a chemical engineer, however; it is the conceptualization of a process for manufacturing something – a chemical, perhaps. In this use of the word we address the problem of designing what pieces of equipment are needed, how they should be connected, how large they should be, and so on, but we do not address the question of how the equipment should be manufactured – materials of construction, locations of welds, precise geometry, and so forth. It is the second sense of the word that we employ in this chapter. Thus, we will exploit the understanding of reaction kinetics developed in Chapter 6 to determine reactor sizes and material flow rates, but we will view the reactor simply as a vessel of a given size, with no attention to the detail that would be required for actual fabrication.
Process design is a subject that is traditionally taught as a capstone course during the last year of a chemical engineering program, because a complete approach to process design obviously requires a broad base of understanding of chemical engineering fundamentals.
Most chemical engineering applications involve chemical reactions; this is true whether we are dealing with the manufacture of computer chips, the creation of scaffolding for cell growth in artificial organs, the design of a novel battery, or the conversion of biomass to synthetic fuel. Chemical reactions can take place in gas, liquid, or solid phases; in the bulk or at interfaces; and with or without catalysts. Many reactions of social, physiological, or industrial significance take place in multiphase environments, where reactive species and reaction products must cross phase boundaries. Some “cracking” reactions for the production of intermediate molecular weight hydrocarbons from heavy components of crude oil, for example, are carried out in “trickle-bed” reactors; here, liquid and gas phases flow together over a bed of catalyst particles. Design and operating considerations for trickle-bed reactors include ensuring the necessary contact between the phases so that chemical species can get to where they need to be for specific reactions to occur. Similarly, many biochemical reactions, including wastewater treatment, require that suspended microorganisms be able to access organic nutrients that are dissolved in the liquid phase, as well as oxygen that is supplied as a gas (perhaps in air) and must dissolve into the liquid.
The design and operating issues for complex reactors of the types mentioned here are addressed in advanced courses, but we can focus on some basic principles essential to our overall understanding that can be elucidated by considering single-phase reactors and simple geometries; many important reactions are, in fact, carried out in a single phase in relatively simple geometries.
The implementation of a great many processes depends ultimately on the ability to separate various species from one another. In this chapter we will build on the basic principles of interphasemass transfer developed in Chapter 10 to explore some of the ideas involved in the design of a separation process. The essential component of the analysis is the equilibrium stage defined in Section 10.4.1. The design problem can be roughly broken down into the actual mechanical implementation of an equilibrium stage and the computation of the number of equilibrium stages needed to effect a desired degree of separation. We shall deal only with the latter; the former remains very much an art and beyond the scope of this introductory text. For simplicity we will restrict this chapter to separation by liquid-liquid extraction. The overall approach and the solution techniques have much greater generality and are applicable to nearly all separation processes, phase-change and nonphase-change alike.
Liquid-liquid extraction is a process in which a solute is transferred between two solvents. We will assume that the two solvents are absolutely immiscible in one another; this is a convenient approximation, although only sometimes realistic. It is traditional to do separation process calculations using mass fractions instead of concentrations. We shall follow this practice, and Section 11.2 is devoted to reformulating the description of an equilibrium stage in terms of mass fractions.
Equilibrium Stage
A mass transfer stage for extraction is shown in Figure 11.1. The two phases with dissolved solute A are fed to a well-stirred contactor, where the agitation is designed to create a large interfacial area and transfer of A across the interface occurs.
As noted in the first chapter, chemical engineering is a broad profession that is critical to addressing many of the issues facing modern society. The intent of this text has been to provide a fundamental understanding of the elements of chemical engineering and to provide a flavor of the challenges that a chemical engineer might face; the quantitative skills developed here are generalizable to problems of far greater complexity than those addressed in this introductory text. There is much more to come to complete a basic chemical engineering education; the core will normally include courses that cover thermodynamics, fluid mechanics, mass transfer, heat transfer, separations, and reactor analysis in depth, as well as a capstone course in design. Other courses in the curriculum will depend on the institution, but will include some selection of advanced courses in chemistry, materials, biology, and mathematics.
Most educational institutions offer undergraduate students an opportunity to do research, and this experience is invaluable for obtaining real insight into the scope of the profession – it is a truism that the research that chemical engineers do is rarely reflected in the courses in the undergraduate curriculum because of time limitations in a four-year professional program, and it is in the research laboratory that an undergraduate student is most likely to see the exciting topics in materials development, synthetic biology, nanotechnology, and so forth that were mentioned in Chapter 1, as well as to experience the intellectual excitement that comes with addressing real open-ended problems.
Up to this point we have addressed physical situations for which mass is the only fundamental dependent variable, and by doing so we have been able to explore a wide range of chemical engineering applications. We have made some implicit assumptions about momentum and energy transport in doing so, however. When we assumed that vessels were perfectly mixed, with a consequent uniform concentration, we did not ask about the nature of mechanical agitation necessary to effect perfect mixing; to have done so would have required incorporation of momentum as a fundamental variable. Similarly, when we assumed that chemical reactors could be operated at a specified temperature and pressure, we did not consider the means by which temperature and pressure control could be effected, nor did we consider the possible impact of temperature transients or of the compressibility of a gas phase; to have done so would have required incorporation of energy as a fundamental variable.
Momentum transport is usually addressed in the chemical engineering curriculum in a course called Fluid Mechanics, or in the first part of a Transport Phenomena sequence. Energy is the subject of courses in Thermodynamics and Heat Transfer, where the latter may be incorporated in a subsequent part of a Transport Phenomena sequence, but an introduction to energy balances is often included in the first course for which this text is intended. We will therefore touch on energetics in order to illustrate the issues involved in incorporation of energy as a fundamental variable.
Most processes, both physicochemical and biological, involve one or more separation process. Human physiology, for example, requires the transfer of oxygen from air in the lungs to the blood stream, and the simultaneous transfer of CO2 from the blood stream to the lungs for removal. The function of the kidney is to process a continuous flow of liquid in order to separate waste products for removal from the body. The production of ethanol by the fermentation of sugars produced from natural products, whether for energy applications or for whiskey, requires that the ethanol be separated from an aqueous stream in which ethanol comprises less than 20 percent. The manufacture of polyethylene terephthalate for textile fibers requires the removal of ethylene glycol that is produced during the condensation polymerization process. A DNA analysis requires the separation of DNA fragments with different lengths and base pairs by gel electrophoresis. The production of oxygen for industrial or medical applications requires that the oxygen be separated from an air stream.
There are a variety of separation methodologies, and the analysis of separation processes has historically held a prominent place in the chemical engineering curriculum. Some, such as distillation and extraction, are familiar. (Brewing coffee or tea is an extraction process that is carried out on a very small scale.) Most physiological separations are membrane processes, in which a thin membrane keeps fluid (liquid or gas) streams apart while permitting certain species to move across the membrane.