To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chapter shows how the classical adaptive filtering algorithms can be adapted to distributed learning. In distributed learning, there is a set of adaptive filtering placed at nodes utilizing a local input and desired signals. These distributed networks of sensor nodes are located at distinct positions, which might improve the reliability and robustness of the parameter estimation in comparison to stand-alone adaptive filters. In distributed adaptive networks, parameter estimation might be obtained in a centralized form or a decentralized form. The centralized case processes the signals from all nodes of the network in a single fusion center, whereas in the decentralized case, processing is performed locally followed by a proper combination of partial estimates to result in a consensus parameter estimate. The main drawbacks of the centralized configuration are its data communication and computational costs, particularly in networks with a large number of nodes. On the other hand, the decentralized estimators require fewer data to feed the estimators and improve on robustness. The provides a discussion on equilibrium and consensus using arguments drawn from the pari-mutuel betting system. The expert opinion pool is the concept to induce improved estimation and data modeling, utilizing De-Groot’s algorithm and Markov chains as tools to probate equilibrium at consensus. It also introduces the distributed versions of the LMS and RLS adaptive filtering algorithms with emphasis on the decentralized parameter estimation case. This chapter also addresses how data broadcasting can be confined to a subset of nodes so that the overall network reduces the power consumption and bandwidth usage. Then, the chapter discusses a strategy to incorporate a data selection based on the SM adaptive filtering.
Chapter 2 presents several strategies to exploit sparsity in the parameters being estimated in order to obtain better estimates and accelerate convergence, two advantages of paramount importance when dealing with real problems requiring the estimation of many parameters. In these cases, the classical adaptive filtering algorithms exhibit a slow and often unacceptable convergence rate. In this chapter, many algorithms capable of exploiting sparse models are presented. Also, the two most widely used approaches to exploit sparsity are presented, and their pros and cons are discussed. The first approach explicitly models sparsity by relying on sparsity-promoting regularization functions. The second approach utilizes updates proportional to the magnitude of the coefficient being updated, thus accelerating the convergence of large magnitude coefficients. After reading this chapter, the reader will not only obtain a deeper understanding of the subject but also be able to adapt or develop algorithms based on his own needs.
In recent years the development of new classification and regression algorithms based on deep learning has led to a revolution in the fields of artificial intelligence, machine learning, and data analysis. The development of a theoretical foundation to guarantee the success of these algorithms constitutes one of the most active and exciting research topics in applied mathematics. This book presents the current mathematical understanding of deep learning methods from the point of view of the leading experts in the field. It serves both as a starting point for researchers and graduate students in computer science, mathematics, and statistics trying to get into the field and as an invaluable reference for future research.
Learn to solve the unprecedented challenges facing Online Learning and Adaptive Signal Processing in this concise, intuitive text. The ever-increasing amount of data generated every day requires new strategies to tackle issues such as: combining data from a large number of sensors; improving spectral usage, utilizing multiple-antennas with adaptive capabilities; or learning from signals placed on graphs, generating unstructured data. Solutions to all of these and more are described in a condensed and unified way, enabling you to expose valuable information from data and signals in a fast and economical way. The up-to-date techniques explained here can be implemented in simple electronic hardware, or as part of multi-purpose systems. Also featuring alternative explanations for online learning, including newly developed methods and data selection, and several easily implemented algorithms, this one-of-a-kind book is an ideal resource for graduate students, researchers, and professionals in online learning and adaptive filtering.