To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When machine learning engineers work with data sets, they may find the results aren't as good as they need. Instead of improving the model or collecting more data, they can use the feature engineering process to help improve results by modifying the data's features to better capture the nature of the problem. This practical guide to feature engineering is an essential addition to any data scientist's or machine learning engineer's toolbox, providing new ideas on how to improve the performance of a machine learning solution. Beginning with the basic concepts and techniques, the text builds up to a unique cross-domain approach that spans data on graphs, texts, time series, and images, with fully worked out case studies. Key topics include binning, out-of-fold estimation, feature selection, dimensionality reduction, and encoding variable-length data. The full source code for the case studies is available on a companion website as Python Jupyter notebooks.
Do you have the tools to address recent challenges and problems in modern computer networks? Discover a unified view of auction theoretic applications and develop auction models, solution concepts, and algorithms with this multidisciplinary review. Devise distributed, dynamic, and adaptive algorithms for ensuring robust network operation over time-varying and heterogeneous environments, and for optimizing decisions about services, resource allocation, and usage of all network entities. Topics including cloud networking models, MIMO, mmWave communications, 5G, data aggregation, task allocation, user association, interference management, wireless caching, mobile data offloading, and security. Introducing fundamental concepts from an engineering perspective and describing a wide range of state-of-the-art techniques, this is an excellent resource for graduate and senior undergraduate students, network and software engineers, economists, and researchers.
Introduction to polytopes and their connectionto algorithms. Equivalence between extensioncomplexity and nonnegative rank. Lower bounds onextension complexity.