To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Opportunities for failure exist at all levels, from hardware, to low-level software, to content creation engines. As hardware and low-level software rapidly improve, the burden is shifting more to developers of software engines and VR experiences. This chapter presents several topics that may aid engineers and developers in their quest to build better VR systems and experiences. Section 12.1 introduces methods for guiding them to improve their discriminatory power. Rather than adapting to become oblivious to a problem, a developer could train herself to become more sensitive to problems. Section 12.2 applies the fundamentals from this book to provide simple advice for VR developers. Section 12.3 covers VR sickness, including the main symptoms and causes, so that VR systems and experiences may be improved. Section 12.4 introduces general methods for designing experiments that involve human subjects, and includes some specific methods from psychophysics. All of the concepts from this chapter should be used to gain critical feedback and avoid pitfalls in an iterative VR development process.
We will see in this chapter that the apparent perfection of our vision is mostly an illusion because neural structures are filling in plausible details to generate a coherent picture in our heads that is consistent with our life experiences. When building VR technology that co-opts these processes, it important to understand how they work. They were designed to do more with less, and fooling these processes with VR produces many unexpected side effects because the display technology is not a perfect replica of the surrounding world. Section 5.1 discusses the anatomy of the human eye within the optical system. Most of the section is about photoreceptors, which are the “input pixels“ that get paired with the “output pixels” of a digital display for VR. Section 5.2 offers a taste of neuroscience by explaining what is known about the visual information that hierarchically propagates from the photoreceptors up to the visual cortex. Section 5.3 explains how our eyes move, which incessantly interferes with the images in our retinas. Section 5.4 concludes the chapter by applying the knowledge gained about visual physiology to determine VR display requirements, such as the screen resolution.
Knowing how light propagates in the physical world is crucial to understanding VR. One reason is the interface between visual displays and our eyes. Light is emitted from displays and arrives on our retinas in a way that convincingly reproduces how light arrives through normal vision in the physical world. In the current generation of VR headsets, a system of both engineered and natural lenses (parts of our eyes) guides the light. Another reason to study light propagation is the construction of virtual worlds. Section 4.1 covers basic physical properties of light, including its interaction with materials and its spectral properties. Section 4.2 provides idealized models of how lenses work. Section 4.3 then shows many ways that lens behavior deviates from the ideal model, thereby degrading VR experiences. Section 4.4 introduces the human eye as an optical system of lenses. Cameras, which can be considered as engineered eyes, are introduced in Section 4.5. Finally, Section 4.6 briefly covers visual display technologies, which emit light that is intended for consumption by human eyes.
This chapter surveys some topics that could influence widespread VR usage in the future, but are currently in a research and development stage. Sections 13.1 and 13.2 cover the forgotten senses. Earlier in this book, we covered vision, hearing, and balance (vestibular) senses, which leaves touch, smell, and taste. Section 13.1 covers touch, or more generally, the somatosensory system. This includes physiology, perception, and engineering technology that stimulates the somatosensory system. Section 13.2 covers the two chemical senses, smell and taste, along with attempts to engineer “displays” for them. Section 13.3 discusses how robots are used for telepresence and how they may ultimately become our surrogate selves through which the real world can be explored with a VR interface. Just like there are avatars in a virtual world (Section 10.4), the robot becomes a kind of physical avatar in the real world. Finally, Section 13.4 discusses steps toward the ultimate level of human augmentation and interaction: brain–machine interfaces.
This book provides the state-of-the-art research on aerial communications coexisting with terrestrial networks from physical, MAC, network, and application layer perspectives. It includes thorough discussion of control issues, access techniques and resource sharing between cellular communication and aerial communications to accommodate larger volumes of traffic and to provide better service to users. Other challenges are explored in this text are: identification of services, radio resource allocation and resource management for aerial links, self-organizing aerial networks, aerial offloading, and performance evaluation of aerial communications. This volume will be a highly useful resource for students, researchers and engineers interested in obtaining comprehensive information on the design, evaluation, and applications of aerial access networks and communications.
Virtual reality (VR) is a powerful technology that promises to transform our lives. This balanced and interdisciplinary text blends the key components from computer graphics, perceptual psychology, human physiology, behavioral science, media studies, human-computer interaction, optical engineering, and sensing and filtering, showing how each contributes to engineering perceptual illusions. Steven LaValle draws on his unique experience as a teacher, researcher, and early founder of Oculus VR, to demonstrate how the best practices and insights from industry are built on fundamental computer science principles. Topics include media history, geometric modeling, optical systems, displays, eyes, ears, low-level perception, neuroscience of vision, graphical rendering, tracking systems, interaction mechanisms, audio, evaluating VR systems, and mitigating side effects. Students, researchers, and developers will gain a clear understanding of timeless foundations and new applications, enabling them to make innovative contributions to this growing field as scientists, engineers, business developers, and content makers.