To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Explains the notion of discrepancy. Describesconnections to randomized communicationcomplexity. Proves lower bounds using convexityand concentration of measure.
With its intuitive yet rigorous approach to machine learning, this text provides students with the fundamental knowledge and practical tools needed to conduct research and build data-driven products. The authors prioritize geometric intuition and algorithmic thinking, and include detail on all the essential mathematical prerequisites, to offer a fresh and accessible way to learn. Practical applications are emphasized, with examples from disciplines including computer vision, natural language processing, economics, neuroscience, recommender systems, physics, and biology. Over 300 color illustrations are included and have been meticulously designed to enable an intuitive grasp of technical concepts, and over 100 in-depth coding exercises (in Python) provide a real understanding of crucial machine learning algorithms. A suite of online resources including sample code, data sets, interactive lecture slides, and a solutions manual are provided online, making this an ideal text both for graduate courses on machine learning and for individual reference and self-study.
Communication complexity is the mathematical study of scenarios where several parties need to communicate to achieve a common goal, a situation that naturally appears during computation. This introduction presents the most recent developments in an accessible form, providing the language to unify several disjoint research subareas. Written as a guide for a graduate course on communication complexity, it will interest a broad audience in computer science, from advanced undergraduates to researchers in areas ranging from theory to algorithm design to distributed computing. The first part presents basic theory in a clear and illustrative way, offering beginners an entry into the field. The second part describes applications including circuit complexity, proof complexity, streaming algorithms, extension complexity of polytopes, and distributed computing. Proofs throughout the text use ideas from a wide range of mathematics, including geometry, algebra, and probability. Each chapter contains numerous examples, figures, and exercises to aid understanding.