To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cu2ZnSnS4 (CZTS) is a promising alternative for Cu(In,Ga)Se2 (CIGS) absorber layers in thin film solar cells and is comprised of commodity elements which will enable scale-up of chalcopyrite panel production unhindered by elemental supplies and costs. Various CZTS synthesis methods, especially sulfurization of stacked metal or metal sulfide layers, are being studied and have led to cell efficiencies up to 6.7% [1]. Here we report our studies of CZTS thin film synthesis via room temperature sputtering from a single CZTS target and co-sputtering from Cu2S, ZnS and SnS2 binary targets, both followed by sulfurization between 500 C - 600 C using either elemental sulfur vapor or in-situ generated H2S. Sputtering from sulfur-containing targets is designed to increase the sulfur content in the precursor films to promote stoichiometry. We report on the effects of processing including deposition on soda-lime and borosilicate glasses and deposition of Na-containing layers on film morphology (AFM/SEM), composition (EDS), phase (XRD), grain size (XRD/EBSD), grain boundary structure (EBSD), optical (spectroscopic ellipsometry) and electrical properties. Processing conditions producing desirable Zn-rich/Cu-poor films are identified [1]. The formation of MoSe2 at Mo/CIGS interface is believed to promote Ohmic contacts, but in CZTS we associate excessive formation of frangible MoS2 with film delamination from Mo/borosilicate glass substrates. Strategies for preventing delamination including adhesion layers are investigated and discussed. P-N junctions are formed with CdS/ZnO using chemical bath deposition and sputtering, and I-V characteristics are reported. Schottky junctions are formed and C-V measurements are used to determine the doping in the CZTS absorber layers.[1] H. Katagiri, et al., MRS Symp. Proc. 1165 1165-M04-01 (2009).
Using atomic-scale Molecular Dynamics (MD) and energy minimization techniques in conjunction with semi-empirical MM3 potential energy functions, we consider the adsorption of a C60 molecule on a series of hypothetical pentacene structures that vary only in the tilt of the angle that the short axis of the pentacene molecules makes with the underlying surface (the long axis lying essentially flat, as on a metal substrate). Important relationships were discovered between the angle adopted by the short axis of pentacene on the surface, φ1, and the adsorption and diffusion characteristics of C60. Static energy calculations show that there is a transition of the deepest energy minima from between the pentacene rows at low values of φ1 to within the rows at high values of φ1, where φ1 is the angle the pentacene short axis makes with the surface. MD confirms this trend by the predominant residence locations at the extreme φ1 values. Furthermore, MD results suggest that the C60 traverses the pentacene surface in the east-west direction for lower φ1 values (φ1 ≤ 40°) and in the north-south direction for higher φ1 values (φ1 ≥ 70°). Taking both static and dynamic results together, the most favorable tilt angles for mono-directional nanowire growth should occur between 70° and 80° off-normal.
Concrete biodeterioration is defined as the damage that the products of microorganism metabolism, in particular sulfuric acid, do to hardened concrete. In Canada and in the northern part of the United States, sewer failures from concrete biodeterioration are almost unknown. In the southern part of the United States and in Mexico, however, it is a serious and expensive problem in sewage collection systems, which rapidly deteriorate. Also, leaking sewage systems result in the loss of groundwater resources particularly important in this arid region. Almost every city in the Mexican-American border region, who's combined population is more than 15 million people, faces this problem. The U.S. cities have made some provision to face these infrastructure problems, but the Mexican cities have made less effort. We recommend here the Mexican norm (NMX-C-414-ONNCCE-2004) [1] to be reviewed, or at least that a warning be issued as a key measure to avoid concrete biodeterioration.
Thick and high quality 4H-SiC epilayers have been grown in a vertical hot-wall chemical vapor deposition system at a high growth rate on (0001) 8 0 off-axis substrates. We discuss the use of dichlorosilane as the Si-precursor for 4H-SiC epitaxial growth as it provides the most direct decomposition route into SiCl 2, which is the predominant growth species in chlorinated chemistries. The RMS roughness of the films ranged from 0.5-2.0 nm with very few morphological defects (carrots, triangular defects, etc.) being introduced, while enabling growth rates of 30-100 μm/hr, 5-15 times higher than most conventional growths. A specular surface morphology was attained by limiting the hydrogen etch rate until the system was equilibrated at the desired growth temperature. Site-competition epitaxy was observed over a wide range of C/Si ratios, with doping concentrations as low as 2x10 14 cm -3 being recorded. X-ray rocking curves indicated that the epilayers were of high crystallinity, with linewidths as narrow as 7.8 arcsec being observed, while microwave photoconductive decay (μPCD) measurements indicated that these films had high injection (ambipolar) carrier lifetimes in the range of 2 μs. These films also appeared to be free of polytype inclusions.
Electromagnetic radiation beyond the diffraction limit with a particular polarization emerges as a need for plasmonic applications. One of these applications is all-optical magnetic recording, which requires circularly-polarized electromagnetic radiation. In this study, a plasmonic cross-dipole nano-antenna is illuminated with diffraction-limited linearly polarized radiation. An optimal configuration for the nano-antenna and the polarization angle of the incident light is identified to obtain linearly, circularly, and elliptically polarized optical spots beyond the diffraction limit. The Poincaré sphere representation is utilized to visually present calculated Stokes parameters for optical spots with linear, circular, and elliptical polarizations from specific antenna geometries.
A study on microstructure and electrical property of cerium (Ce)-doped Ge2Sb2Te5 (GST) layers for phase-change memory (PCM) application were presented. Ce doping does not suppress the resistivity of amorphous GST and the resistivity ratio of amorphous and crystalline GST remains at about 105. Further, Ce-doping escalates the recrystallization temperature (Tx) of GST from 159 to 236°C. Such a unique behavior would greatly benefit the preservation of signal contrast as well as the high-density signal storage and will not cause the increase of device writing current. X-ray diffraction (XRD) indicated that Ce doping stabilizes amorphous GST and suppresses the formation of hexagonal phase. Transmission electron microscopy (TEM) revealed Ce doping refines the grain size of GST. Kissinger's analysis found that Tx and activation energy (Ea) of phase transition for doped-GST both increase with the increase of Ce content. Isothermal experiment found the Ce doping increases temperature for 10-yr data retention from 76 and 170°C. This is attributed to the presence of Ce solutes in GST matrix that inhibits the grain growth during recrystallization.
Static-mode electrical test on PCM device containing doped GST as the programming layer found that Ce incorporation indeed increases the switching threshold voltage (Vth). This confirmed that Ce doping effectively retards the crystallization of GST and improves the stability of amorphous GST.
Studies have shown that wide bandgap material is required for high efficiency multi-junction solar cell applications. Here, we address proper deposition condition for high quality a-SiC:H films. In high power high pressure regime, we observed that the defect density get much lowered to the similar defect level of a-Si:H film with high H2 dilution. Single junction solar cells fabricated with the optimized condition show high open circuit voltage and low LID effect. The degradation after the LID test was only 13 % reduction of the efficiency indicating that a-SiC:H could be promising material for multi-junction solar cells.
Alkylene-bridged hybrid glass doped with Cr/CrOx was developed by sol-gel polymerization. When laser beam goes through a solid media, density wave is linear since heat doesn't decay through the media effectively in solid media. Interestingly, we observed a strong ‘acoustic response' from alkylene-bridged hybrid glass doped with Cr/CrOx due to high grating effect, high photo acoustic diffraction efficiency. The acoustic response generated from the doped hybrid glass was as compressive as liquid thus the acoustic refractive intensity generated from the hybrid glass was as strong as liquid. In our laser experiment, the diffraction efficiency (45%) of the glass is higher than that of methanol (25%). The hybrid glass can be used to develop diffraction beam modulators.
Anodic Aluminum Oxide (AAO) is widely employed as a template for fabrication of nanowires and nanotubes due to its ability to generate self organized (SO), well ordered pore structures. We have developed a new aluminum pre-patterning technique to create well ordered nanopore arrays on thin films deposited on silicon substrates. We form patterns of thicker oxide on the surface via local oxidation process using a conducting Atomic Force Microscope (AFM) tip working in contact mode. Pores are forced to nucleate between the pre-oxidized regions during the anodization process. The relation between applied voltage and ordered interpore distance has been found to be linear for these supported thin films. However, the pore spacing is highly reduced compared to free standing foils. A new empiric law has been confirmed for a wide range of voltages, solution concentrations and different electrolytes, including oxalic and phosphoric acid. Our results show that pre-oxidation patterning is an alternative technique to achieve an ordered nanoporous template through the anodization process.
The thermal stabilization of γ-Al2O3 using W+6 ions has been found useful to the synthesis of Pt/Al2O3 catalysts. The sequential impregnation method was used to study the effect of W6+ upon Pt/ γ-Al2O3 reducibility, Pt dispersion, Raman spectroscopy and n-heptane hydroconversion. The W/Pt atomic ratios varied from 3.28 to 75. We found that the W6+ ions delayed reduction of a fraction of Pt+4 atoms beyond 773 K. At the same time, W6+inhibited sintering of the metallic crystallites once they were formed on the surface. For the sample with a W/Pt atomic ratio of 3.28, W6+ did not inhibit the H2 reduction of Pt oxides even below of 773 K, the Pt oxides were reduced completely, however, the Pt dispersion decreased for this sample with respect to the Pt/γ-Al2O3 catalyst. After reduction at 1073 K, sequential samples impregnating Pt on WOx/γAl2O3 were more active and stable during n-heptane hydroconversion than monometallic Pt/γAl2O3 catalyst. Selectivities for dehydrocyclization, isomerization and Hydrocracking changed significantly when the W/Pt atomic ratio and reduction temperature increased. Initial and final reaction rates were more sensitive to reduction temperature. W6+ ions promoted high thermal stability of Pt crystallites when sequential catalysts were reduced at 1073 K and deactivation of bimetallic catalysts reduced at 773 K and 1073 K was less than the deactivation of Pt/Al2O3 catalyst.
The safe management and disposition of used nuclear fuel and/or high level nuclear waste is a fundamental aspect of the nuclear fuel cycle. The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. However, a decision not to use the proposed Yucca Mountain Repository will result in longer interim storage at reactor sites than previously planned. In addition, alternatives to the once-through fuel cycle are being considered and a variety of options are being explored under the U.S. Department of Energy's Fuel Cycle Research and Development Program.
These two factors lead to the need to develop a credible strategy for managing radioactive wastes from any future nuclear fuel cycle in order to provide acceptable disposition pathways for all wastes regardless of transmutation system technology, fuel reprocessing scheme(s), and/or the selected fuel cycle. These disposition paths will involve both the storing of radioactive material for some period of time and the ultimate disposal of radioactive waste.
To address the challenges associated with waste management, the DOE Office of Nuclear Energy established the Used Fuel Disposition Campaign within its Fuel Cycle Research and Development Program in the summer of 2009. The mission of the Used Fuel Disposition Campaign is to identify alternatives and conduct scientific research and technology development to enable storage and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The near-and long-term objectives of the Fuel Cycle Research and Development Program and it's Used Fuel Disposition Campaign are presented.
Silicon carbide has robust mechanical, electrical, and chemical properties which make it an attractive material candidate for micro- and nano-electromechanical systems (MEMS and NEMS). 3C-SiC films grown via a polysilicon seed-layer CVD-deposited on an oxide coated (111) Si substrate offers an innovative method to overcome the residual film stress issues associated with 3C-SiC heteroepitaxy and the difficulties of fabricating structures from 3C-SiC films. The oxide plays a dual role by permitting film relaxation with respect to the supporting substrate and functioning as a MEMS release layer, allowing MEMS structures such as cantilevers and diaphragms, to be easily fabricated from the 3C-SiC film. The impact of the oxide layer on the relaxation of the film stress was investigated by comparing direction-sensitive MEMS stress sensors fabricated from 3C-SiC films grown via a polysilicon-on-oxide-coated-substrate and a polysilicon-on-crystalline Si substrate. Scanning Electron Microscopy (SEM) analysis of bridge structures fabricated on the polysilicon-on-oxide substrate revealed evidence of film strain relaxation when compared to bridge structures fabricated on the polysilicon-on-crystalline Si substrate. However, the upward-curled cantilever and comb structures fabricated on both substrates indicate the presence of a strain gradient in the 3C-SiC film grown on both substrates.
Herein we present methods for synthesizing monodisperse mesoporous silica particles and silica particles with bimodal porosity by templating with surfactant micelle and microemulsion phases. The fabrication of monodisperse mesoporous silica particles is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to concentration and micellization of the surfactant. At the same time, the silica solidifies around the surfactant structures, forming equally sized mesoporous particles. We show that hierarchically bimodal porous structures can be obtained by templating silica microparticles with a specially designed surfactant micelle/microemulsion mixture. Oil, water, and surfactant liquid mixtures exhibit very complex phase behavior. Depending on the conditions, such mixtures give rise to highly organized structures. A proper selection of the type and concentration of surfactants determines the structuring at the nanoscale level. Tuning the phase state by adjusting the surfactant composition and concentration allows for the controlled design of a system where microemulsion droplets coexist with smaller surfactant micellar structures. The microemulsion droplet and micellar dimensions determine the two types of pore sizes.
Using a hard exotemplate procedure, hierarchically structured carbonaceous foams have been designed, using silica monolith as inorganic template and phenolic resin as carbon precursor. The open cell carbonaceous monoliths exhibit specific surface areas from 500 to 800 m2.g-1, essentially based on microporosity and macropores ranging from 0.05 up to 50 μm. Application as electrochemical energy storage devices have been checked and discuss inhere.
The future resolution requirements for the semiconductor industry demand advanced lithographic techniques, such as immersion and extreme ultraviolet (EUV) technologies, which will increase the cost of microelectronics manufacturing. Currently, low-k dielectric materials, which are used as insulating layers between the copper wiring, are indirectly patterned using a set of sacrificial layers and etch processes. The sacrificial layers include a photoresist polymer that must first be imaged prior to transferring the pattern to the underlying layers, including the dielectric layer. In order to reduce the number of processing steps required for semiconductor manufacturing, we have developed a novel photo-patternable low-k dielectric material that (1) eliminates the need for sacrificial layers and (2) reduces the number of wafer processing steps. Silsesquioxane copolymers that undergo acid-catalyzed crosslinking when exposed to 193nm wavelength were synthesized. In addition to the direct photo-patternability, the patterned structures are suitable as a dielectric material with a dielectric constant as low as 2.4, and an appreciable elastic modulus (E > 4.0 GPa). These photo-patternable low-k materials represent a ‘greener' approach to semiconductor manufacturing which has the ability to reduce cost, waste materials, and energy consumption.
The synthesis of Al2O3-based functional materials having 10 vol. % of fine aluminum or titanium and aluminum-disperse or titanium-dispersed nitride hardened-particles has been explored. Two experimental steps have been set for the synthesis; specifically, sintering of Al2O3-aluminum or Al2O3-titanium powders which were thoroughly mixed under high energy ball-milling, pressureless-sintered at 1400°C during 1 h in argon atmosphere and then for the second step it was induced formation of aluminum nitride or titanium nitride at 500°C during different times (24, 72 and 120 h) by a nitriding process via immersion in ammoniac salts. SEM analyses of the microstructures obtained in nitride bodies were performed in order to know the effect of the ammoniac salts used as nitrating on the microstructure of aluminum or titanium for each studied functional material. It was observed that an aluminum nitride or titanium nitride layer growth from the surface into the bulk and reaches different depth as the nitriding time of the functional material was increased. The use of aluminum or titanium significantly enhanced density level and hardness of the functional materials.
Understanding the high-pressure kinetics associated with the formation of methane hydrates is critical to the practical use of the most abundant energy resource on earth. In this study, we have studied, for the first time, the compression rate dependence on the formation of methane hydrates under pressures, using dynamic-Diamond Anvil Cell (d-DAC) coupled with a high-speed microphotography and a confocal micro-Raman spectroscopy. The time-resolved optical images and Raman spectra indicate that the pressure-induced formation of methane hydrate depends on the compression rate and the peak pressure. At the compression rate of around 5 to 10 GPa/s, methane hydrate phase II (MH-II) forms from super-compressed water within the stability field of ice VI between 0.9 GPa and 2.0 GPa. This is due to a relatively slow rate of the hydrate formation below 0.9 GPa and a relatively fast rate of the water solidification above 2.0 GPa. The fact that methane hydrate forms from super-compressed water underscores a diffusion-controlled growth, which accelerates with pressure because of the enhanced miscibility between methane and super-compressed water.
This study discusses topography specifications for 22 nm and beyond CMP process and presents recent experimental data. We evaluated local topography impact on CD development in the subsequent layer using specially designed 22-nm test patterns. A wide range of localized erosions were generated in CMP within a single exposure field to avoid any focus-correction effect by the scanner or any other scanner-induced focus change between different levels of local erosion. Local erosions were measured by atomic force microscopy (AFM) after each process step from CMP to lithography to identify the local planarization effect from other film coatings between CMP and lithography. Post-litho CD inspection was done in the subsequent layer over the local erosion areas. Using experimental results, the paper also discusses BEOL pattern design rule for maximizing the process window.
Surface plasmon polaritons are responsible for various optical phenomena, including negative refraction, enhanced optical transmission, and nanoscale focusing. Although many materials support plasmons, the choice of metal for most applications has been based on traditional plasmonic materials, such as Ag and Au, because there have been no side-by-side comparisons of different materials on well-defined, nanostructured surfaces. This article will describe how a multiscale patterning approach based on soft interference lithography can be used to create plasmonic crystals with different unit cell shapes—circular holes or square pyramids—which can be used as a platform to screen for new materials. The dispersion diagrams of plasmonic crystals made from unconventional metals will be presented, and the implications of discovering new optical coupling mechanisms and protein-sensing substrates based on Pd will be described. Finally, the opportunities enabled by this plasmonic library to dial into specific resonances for any angle or material will be discussed.
The pollution caused by heavy metals is one of the major environmental problems that is imperative to be solved. New technologies, easy to implement and to adapt to any system, deserve special attention and are a focus of this work the ability of Chlorella sp. and E. coli genetically engineered with mice metallothionein I, both immobilized in alginate of calcium to remove Cd(II) and Pb(II) from aqueous solutions was investigated in batch assays for the treatment of diluted aqueous solutions. The kinetics, sorption capacities and sorption percentage were determined. The influence of metal concentration in solution is discussed in the terms of Langmuir isotherm and constants. Sorption capacities increased with increasing metal concentration in solution. For solution containing 300 mg/L of metal, the observed uptake capacities were 94.941±1.094 mgCd/gChlorella., 24.076±2.292 mgCd/gE.coli and 239.17±2.478 mgPb/gChlorella, 37.952±4.245 mgPb/gE.coli. The Langmuir constants to Chlorella sp. were qmax=285.72(mgPb/g), b=0.0276(l/mgPb), qmax=103.65(mgCd/g) and b=0.0005(l/mgCd) while to E. coli were qmax=28.141(mgPb/g), b=0.113(l/mgPb), qmax=24.272(mgCd/g) and b =0.019(1/mgCd). The biomass of the algae showed to have better capacity of metallic sorption that the biomass of the bacteria genetically engineering. The study proved that microorganisms biomass is a suitable material for the removal of the studied heavy metals ions from aqueous solutions, achieving removal efficiencies higher than 90%, and could be considered as a potential material for treating effluent polluted with Cd(II) and Pb(II) ions.