To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We theoretically studied how the electric filed effect can modify thermoelectric properties of intrinsic bismuth telluride nanowires, which are grown along [110] direction. The electronic structure and wave functions were calculated by solving the self-consistent system of the Schrodinger and Poisson equations by means of both the Thomas-Fermi approximation and the spectral element method. The thermoelectric parameters were determined using a constant relaxation-time approximation. The external electric field can increase the Seebeck coefficient of a nanowire with 7 - 15 nm lateral dimensions by nearly a factor of two, and enhance the figure of merit by an order of magnitude.
A process for the synthesis of silicon carbide (SiC) inert matrix fuels at a low temperature (1050 °C) is reported which utilized a liquid polymer precursor. As the polymer content increased, the theoretical density of the pellet at first increased and then reached a plateau. From the onset of the plateau, the packing of the one micron SiC particles in the green body was determined to be 64-68% at 600 MPa pressing pressure. As expected, mixing coarse and fine SiC particles gave a higher pellet density. The maximum density achieved was 80% of the theoretical density. Mercury porosimetry showed that the largest pore size was around 10% of the largest particle sizes present in the green body. SEM images showed that ceria, which was selected as a surrogate for PuO2 in the present study, was well distributed.
With the increase in integrated circuit (IC) feature density, the quality of chemical mechanical polishing (CMP) becomes more important as the copper interconnects decrease in size. The optimization of the IC manufacturing process will be greatly enhanced if the nanoscale effects on CMP are better understood. CMP-related wear at the sub-micron scale, where a single particle affects the microstructure of individual copper features within the substrate, needs to be investigated to account for wafer-scale variations. Hardness is known to affect the material removal rate, but the grain level mechanism of the removal process is not yet well known. In this work, the orientation-dependence of wear has been investigated by performing nanoscale scratch tests on single crystal copper along different crystallographic planes, indentified using orientation imaging microscopy (OIM). An analysis of the surface forces and post-scratch topography produced during the scratch tests was conducted and the results have been interpreted from a CMP perspective. Ultimately, these results are expected to refine existing material removal rate models which do not consider the sensitivity of microstructure on the CMP process.
In this study, well separated tapered CuO nanowires have been synthesized on copper grid using an easy and cost effective thermal oxidation method. A set of spectroscopic investigations have been performed on one single tapered CuO nanowire using Energy Dispersive X-ray, confocal Raman and confocal Photoluminescence spectroscopy to get insight into the mechanism of growth of the nanowires. Energy Dispersive X-ray studies reveal crystallization process of CuO nanowires occur from Cu/Cu2O mixed phase state to pure CuO structure. Raman measurements indicate a little sharpening of the Raman peaks with increasing growth temperature of the nanowires starting from 400°C to 600°C. Photoluminescence studies were carried out by mapping along the length of the nanowire to investigate the growth as well as optical properties of a single tapered CuO nanowire. As the diameter of the single tapered CuO nanowire decreases, the green emission of the nanowire gradually shifts towards the higher energy side. A steady blue shift of 20 nm of the photoluminescence peak has been attributed to the nanosize effect of the tapered nanowire along the length and enhanced surface defects.
Recent experiments suggest that Ti doped ZnO can be a promising room temperature dilute magnetic semiconductor (DMS) and a potentially useful material for spintronic devices. Furthermore, the fact that Ti doped ZnO shows ferromagnetic behaviour despite it contains no magnetic element makes this system good candidate for theoretical investigation regarding the controversies about the origin of ferromagnetic ordering in TM-doped ZnO. In this work, the density functional theory (DFT) is used to calculate the electronic and magnetic structures of Ti-doped ZnO. The obtained results are used to discuss the origin of the ferromagnetism, and the contribution of different atoms in the magnetic moment.
Barium strontium titanate solidly mounted resonators (SMR) were fabricated with three different acoustic Bragg reflectors (ABR) on a sapphire substrate. The three devices had ABR structures consisting of W/SiO2/W/SiO2, Mo/SiO2/Mo/SiO2, and Pt/SiO2/Pt/SiO2 respectively. The s-parameters of all three devices were measured. The results showed that the quality factor increased as a function of the material in the ABR structure. The quality factor for the devices with tungsten, molybdenum and platinum in the ABR structures are 101, 88, and 31, respectively. This investigation showed how the material in the ABR structure can contribute to the acoustic loss in the device.
High crystal quality crack-free AlN on sapphire was grown by low pressure metal organic vapor phase epitaxy (MOVPE). Growth experiments combine two recent approaches: the ammonia pulse-flow method and ammonia continuous-flow growth mode by varying the V/III ratio. The detailed aspects of MOVPE, employing the periodic multilayer approach at low, intermediate, and high temperatures are described. This method yields significant reduction of screw dislocation density and provides very smooth surface for thin AlN layers.
A 1 μg High Burn Up Structure (HBS) fragment was extracted from a UO2 fuel pellet irradiated for 7 cycles in a EDF Pressurised Water Reactor (PWR). In situ examinations were performed with an Environmental Scanning Electron Microscope (ESEM) in order to characterize UO2 microstructure evolution during a temperature ramp up to 1,600K. The results are compared to previously published data on HBS annealing tests performed in a Knudsen cell where observed burst releases are explained as sample cracking during the experimental sequence.
The particular plastic behaviour of corrugated metallic strips under tension has been investigated and it has been exploited to propose a new design of structural material using strengthening by plastic corrugated reinforcement. It is reported that the proposed approach is suitable to strongly improve the strain-hardening by this specific architecture.
To further our understanding of nanoparticle interactions with biological systems, it is important that highly sensitive, reliable and robust methods for labelling particles are established.We report here the application of a series of bi-functional cage ligands to radiolabel a range (i.e. shapes and sizes) of titanium dioxide (TiO2) particles. The cages were covalently attached to the surface of the particles via the use of a dopac derivative and then radiolabelled with a gamma emitting radioisotope. The final radiolabelled nanoparticles proved to be stable in solution and the method easy and robust. The application of a gamma emitter allows the radiolabelled particles to be tracked in vivo and in the environment.
The article addresses an experimental approach, which proved to be indispensable in basic and applied hydrogen storage R&D—the preparation and modification of hydrogen-rich materials using mechanical processing. A possible mechanism of mechanically induced transformations in solid materials is highlighted.
We deposited various nano structured ZnO thin films with plasma treatment on an alumina substrate and fabricate ZnO sensors for acetone detection. The ZnO sensors with various nano structures and the plasma treatment were deposited by radio frequency (RF) magnetron sputtering method with RuO2 micro heater and Ru electrode. In order to control a work function intentionally, the various deposition conditions and the plasma treatment were used. Sensitivities of the ZnO sensor were measured in acetone vapor and air at 250 degree C. In conclusion, we suggested that the sensitivity of ZnO sensors for acetone strongly depends on the work function of the as-deposited or plasma treated nano structured ZnO thin films.
Due to the difficulty in handling nanofibers, little is reported and understood on the dry adhesion between electrospun nanofibers. In this study, we develop a technique to measure the dry adhesive forces between electrospun nanofibers. Of critical importance is the ability to mimic naturally occurring dry adhesion such as that between gecko's and spider's foot hairs and untreated surfaces. The adhesion test was performed on two poly(e-caprolactone) electrospun ultrafine fibers using a nanoforce tensile tester. It was found that the adhesive force per unit area increased with decreasing fiber diameter. The degree of crystallinity, order parameters of macromolecules in the amorphous region and crystallite orientation of the spun fibers were determined by the differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The high measured adhesion between single PCL fibers in comparison to other reported values was attributed to crystal orientation due to electrospinning and the increase of adhesive force per unit area with decreasing fiber diameter.
Hot Wire Chemical Vapor Deposition (HWCVD) is a fast deposition technique with high potential for homogeneous deposition of thin films on large area panels or on continuously moving substrates in an in-line manufacturing system. As there are no high-frequency electromagnetic fields, scaling up is not hampered by finite wavelength effects or the requirement to avoid inhomogeneous electrical fields. Since 1996 we have been investigating the application of the HWCVD process for thin film transistor manufacturing. It already appeared then that these Thin Film Transistors (TFTs) were electronically far more stable than those with Plasma Enhanced (PE) CVD amorphous silicon. Recently, we demonstrated that very compact SiNx layers can be deposited at high deposition rates, up to 7 nm/s. The utilization of source gases in HWCVD of a-Si3N4 films deposited at 3 nm/s is 75 % and 7 % for SiH4 and NH3, respectively. Thin films of stoichiometric a-Si3N4 deposited at this rate have a high mass-density of 3.0 g/cm3. The dielectric properties have been evaluated further in order to establish their suitability for incorporation in TFTs. Now that all TFT layers, namely, the SiNx insulator, the a-Si:H or μc Si:H layers, and the n-type doped thin film silicon can easily be manufactured by HWCVD, the prospect of “all HWCVD” TFTs for active matrix production is within reach. We tested the 3 nm/s SiNx material combined with our protocrystalline Si:H layers deposited at 1 nm/s in ‘all HW’ TFTs. Results show that the TFTs are state of the art with a field-effect mobility of 0.4 cm2/Vs. In order to assess the feasibility of large area deposition we are investigating in-line HWCVD for displays and solar cells.
Photoluminescence (PL) spectroscopy is a powerful technique for probing the structures of many types of III-V semiconductor materials. When a semiconductor material is excited at a particular wavelength, electron-hole pairs are generated. The most intense radiative transition is between the conduction band and valence band, and this measurement is used to determine the material band gap. Radiative and non-radiative transitions in semiconductors also involve localized defect levels. The photoluminescence energy associated with these levels can be used to identify specific defects, and the amount of photoluminescence can be used to determine their concentration, and thus predict device quality. At ambient temperatures, the PL signal is typically broad, as much as 100 nm in width. When cooled, structural details may be resolved, and a small spectral shift between 2 samples may represent a change in a structural parameter. Thus a system with high spectral resolution is required.
In this paper, a modular Low Temperature Photoluminescence system (LTPL) for measuring optical band gap as a function of temperature is described. Results show that the optical band gap shifts towards higher energy as the sample temperature decreases.
High temperature post-deposition annealing studies were done on hydrogenated amorphous silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) using the layer-by-layer (LBL) deposition technique. The films were annealed at temperatures of 400 °C, 600 °C, 800 °C and 1000 °C in ambient nitrogen for one hour. Auger electron spectroscopy (AES) depth profiling results showed that high concentration of O atoms were present at the substrate/film interface and at film surface. Very low concentration of O atoms was present separating silicon layers at regular intervals from the film surface and the substrate due to the nature of the LBL deposition and these silicon oxide layers were stable to high annealing temperature. Reflectance spectroscopy measurements showed that the onset of transformation from amorphous to crystalline phase in the LBL a-Si:H film structure started when annealed at temperature of 600 °C but the X-ray diffraction (XRD) and Raman scattering spectroscopy showed that this transition only started at 800 °C. The films were polycrystalline with very small grains when annealed at 800 °C and 1000 °C. Fourier transform infrared spectroscopy (FTIR), measurements showed that hydrogen was completely evolved from the film at the on-set of crystallization when annealed at 800 °C. The edge of the reflectance fringes shifted to longer wavelength decrease in hydrogen content but shifted to shorter wavelength with increase in crystallinity.
We have analyzed the degree of crystalline lattice recovery in samples implanted with Ti concentrations well above the Mott limit and subsequently Pulsed-Laser Melting (PLM) annealed by means of Raman spectroscopy and Rutherford Backscattering Spectroscopy (RBS). Since very recently, theoretical studies predicted Ti interstitial sites for the Intermediate Band (IB) formation, the knowledge of the Ti impurity lattice location after PLM annealing is an essential point that can be elucidated by means of RBS measurements. After PLM annealings, Raman and RBS measurements have shown a decrease in the lattice crystalline quality as implanted dose is increased, yielding a significantly improvement of the lattice quality at the highest energy density studied. The RBS channeling spectra show that after PLM annealings Ti impurities are mostly occupying interstitial lattice sites.
An overview is given of new ferromagnetic Heusler alloys like Ni-Co-(Al, Ga, Zn), Co-Ni-(Al, Ga, Zn), Fe-Ni-(Al, Ga, Zn) and Fe-Co-(Al, Ga, Zn), which are compared with today's mostly investigated systems such as Ni-Mn-Z (Z = Al, Ga, In, Sn, Sb). The investigations are based on first-principles as well as Monte Carlo calculations. For some new systems, the simulations of atomic structure and magnetic and electronic properties allow to predict higher Curie and martensitic transformation temperatures than those of prototypical Ni-Mn-Z materials. Some of the new materials may be distinguished for devices which exploit the magnetic shape memory effect. Interestingly, in general, all off-stoichiometric alloys display competing antiferromagnetic correlations, which may be important for devices using the magnetocaloric effect. The Curie temperatures are obtained from Monte Carlo simulations using magnetic exchange parameters from ab initio calculations while the structural instability is inferred from local minima in the ab initio total energy curves as a function of the tetragonal distortion. The manifestation of phonon softening as a precursor of structural transformations is present in the austenitic phase of most of the calculated ferromagnetic shape-memory alloys. However, quite remarkably, we find that phonon softening is absent in a few systems such as Co2NiGa.
Templated electrodeposition was used to synthesize silver-zinc oxide nanowires and iron oxide (Fe2O3) nanotubes in polycarbonate track etched (PCTE) membranes. Metal/oxide segmented nanowires were made to produce hydrogen gas from a water/methanol mixture under ultraviolet irradiation. It was observed that gas production increased during irradiation.Iron oxide nanotubes were synthesized via a gel synthesis route, avoiding clogging of the membrane pores during growth. The nanotubes formed without thermal after-treatment. Transmission electron microscopy (TEM) analysis and selected area electron diffraction (SAED) revealed a completely amorphous iron oxide structure. By demonstrating the synthesis of photocatalytically active segmented nanowire and nanotubes without post-treatment steps, templated electrodeposition can be a versatile and low cost tool for nanowires with designed functionality or fast nanotube synthesis.
Growth of the vanadium pentoxide xerogel in the presence of the polyaniline thin film (V2O5/PANI) in different chemical treatment on substrate are presented. The in situ characterization studies revealed the presence of a lamellar structure for the V2O5/PANI hybrid material. The intercalation reaction was evidenced on the basis of the increase in the d-spacing as well as the displacement of the absorption bands toward lower energy levels. The growth of V2O5/PANI thin film, from direct reaction, on glasses substrate using pre-treated with cationic surfactant cetyl pyridinium chloride (CPC) and cetyl trimethylammonium bromide (CTAB) presented layers with a surface homogeneous. The UV/ozone and RCA treatment showed that the film had low adhesion on substrate compared with CPC and CTAB treatment. Furthermore, these results suggests that the CTAB and CPC treatment can be used, further, for V2O5/PANI LbL films using V2O5 gel as first layer as well as a promising candidate for applications as sensor for ammonia detection in poultry shed.