To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ferroelectric film-on-foil capacitors hold special promise to replace discrete passive components in the development of electronic devices that require greater performance and smaller size. We have grown ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films on nickel substrates by chemical solution deposition. The dielectric properties were determined for samples of ≈1.15-μm-thick PLZT film grown on LaNiO3-buffered nickel substrates. Measurements on these samples yielded a dielectric constant of ≈1300, dielectric loss (tan δ) of ≈0.05, and leakage current density of ≈7 × 10-9 A/cm2. An energy density of ≈74 J/cm3 was measured at room temperature with 250-μm-diameter capacitors. Highly accelerated lifetime tests were conducted at 100°C to determine the reliability of the ≈1.15-μm-thick film-on-foil capacitors under field stress conditions (with applied electric field from 8.7 × 105 V/cm to 1.3 × 106 V/cm). The breakdown behavior of the PLZT film-on-foil capacitors was evaluated by Weibull analysis. A voltage acceleration factor of ≈-6.3 was obtained. From the test results, a mean time to failure of >3000 hr was projected for capacitors operated at 100°C with ≈2.6 × 105 V/cm dc electric field.
Nanoporous electrodes, such as those made from carbon or gold, can capture and release ionic analytes at concentrations near 1 mole per liter of pore volume through capacitive charging or electrochemically reversible adsorption. In vitro studies suggest that this phenomenon can be the basis for a noninvasive, precise, and programmable drug delivery method. It would eliminate the need for bulk fluid delivery to target tissue and require only a thin electrical connection, minimizing pain and tissue disruption. We have designed effective gold electrode assemblies and observed the depletion and release phenomena using electrochemical methods and charged dyes.
Gold nanoparticles were linked to ZnO films and nanowires using phosphonic and carboxylic acid ligands. TEM and STEM-HAADF characterization showed that gold nanoparticles modified with both types of ligands anchored on ZnO nanowire surfaces as well as on ZnO films. After removing the ligands from the interface between ZnO nanowires and supported gold nanoparticles, the electric conductivity in the presence of methanol vapor increased by 100 times as compared to the bare ZnO nanowire, which suggested enhanced-catalytic effects due to the hybrid structure. In addition, ZnO/Au nanomaterials were synthesized by linking ZnO nanoparticles and carboxylate-functionalized gold nanoparticles in solution. UV-vis characterization showed both the bandgap absorption from ZnO and the plasmon absorption from gold nanoparticles. Formation of hybrid nanosystems like these using organic ligands as linkers not only can lead to materials with enhanced properties but also minimize the waste of precious elements because the assembly process is an additive, rather than subtractive, process.
Deposition of MgHx (MgH2 + Mg) thin films is performed using RF reactive sputtering in argon-hydrogen plasma. Films are characterized using x-ray diffraction (XRD), scanning electron microscopy, optical and resistivity measurements. Formation of crystalline MgH2 is confirmed by XRD, but the formation of some metallic Mg in the films could not be avoided. Increased H/Mg ratio by deposition at high hydrogen flow or high total pressure gives films that oxidize within days or weeks. Deposition at elevated substrate temperature results in improved crystallinity and stability. Initial studies of MgHx for silicon surface passivation are presented.
We propose a novel subwavelength terahertz (THz) waveguide using the magnetic plasmon polariton (MPP) mode guided by a narrow gap in a negative permeability metamaterial. Deep subwavelength wave-guiding (< λ/10) with a modest propagation loss (2.5 dB/λ) and group velocities down to c/21.8 is demonstrated in a straight waveguide, a 90-degree bend, and a splitter. The distinctive dispersions of the guided mode with positive and negative group velocities are explained analytically by considering the dispersive effective optical constants of the metamaterial. The proposed waveguiding system inherently has no cutoff for any core width and height, paving the way toward the deep subwavelength transport of THz waves for integrated THz device applications.
The advancing miniaturisation of e.g. microelectronic devices leads to an increasing interest in physically motivated continuum theories of plasticity in small volumes. Such theories need to be based on the averaged dynamics of dislocations. Preserving the line-like character of these defects, however, posed serious problems for the development of dislocation-based continuum theories, while continuum theories based on scalar dislocation densities necessarily stay on a phenomenological level. Within this work we apply a dislocation-based continuum theory, which is based on a physically meaningful averaging of dislocation lines, to the benchmark problem of bending of a free-standing thin film.
Poly(methylsilsesquioxane) (PMSSQ) based hybrid materials are promising candidates to produce substrate-independent stable and adherent surface coatings. Usually these materials are synthesized by controlled radical polymerization from inorganic precursors. The presented synthetic pathway in here demonstrates how to graft PMSSQ networks from an endgroup-functionalized organic polymer and thus enlarges the range of accessible inorganic/organic hybrid coating materials.
Nanocrystalline electrodeposition can be used to reinforce conventional metallic micro-truss materials and conventional metal foams, creating new types of metal/metal cellular hybrids in which the mechanical performance is controlled by an interconnected network of nanocrystalline tubes. This approach takes advantage of the large strength increase that can be obtained by grain size reduction to the nm-scale and the fact that the electrodeposited material is optimally positioned away from the neutral bending axis of the composite cellular struts or ligaments. This article presents an overview of the potential for structural reinforcement of bending-dominated and stretching-dominated cellular architectures by nanocrystalline electrodeposition.
Noise spectra in plasma deposited SixGeyBz:H thermo-sensing films for micro-bolometers have been studied. The samples were characterized by SIMS (composition) and conductivity (room temperature conductivity, activation energy) measurements. The noise spectra were measured in the temperature range from T= 300 K to T=400 K and in the frequency range from f=2 Hz to f=2×104 Hz. The noise spectra SI(f) for the samples Si0.11Ge0.88:H and Si0.04Ge0.71B0.23 can be described by SI(f) ˜ f– β with β = 1 andβ = 0.4, respectively. For the sample Si0.06Ge0.67B0.26 two slopes were observed: in low frequency region f≤ 103 Hz β1= 0.7 and at higher frequencies f>103 Hz β2= 0.13. Increasing temperature resulted in an increase of noise magnitude and a change of β values. The latter depended on film composition. The correlation observed between noise and conductivity activation energies suggests that noise is due to bulk rather than interface processes. Noise spectrum of the thermo-sensing film Si0.11Ge0.88:H was compared with that for micro-bolometer structure with the same thermo-sensing film. The micro-bolometer structure showed higher noise value in entire frequency range that assumed additional processes inducing noise.
Further development in the area of vibration energy harvesting is limited by the lack of efficient methods to adapt the harvester to its surroundings. To this end, we propose an innovative passive way of automatic passive resonance frequency tracking.
We present a new approach employing mechanical non-linear behaviour of the system to track the vibration frequency peak. An analytical model representing these nonlinear harvesting systems has been developed and analysed. Experimental results obtained with custom fabricated MEMS devices show an experimentally verified frequency adaptability of over 36% for a clamped-clamped beam device at 2g (1g=9.81m.s-2) input acceleration. We believe that the proposed solution is perfectly suited for autonomous industrial machinery surveillance systems, where vibrations with high accelerations that are necessary for enabling this solution are abundant.
Nanocrystalline nanolaminate (ncnl) structures are widely used in the study of physical properties in order to engineer materials for a variety of industrial applications. Often, novel and interesting mechanical behaviours that are found in nanolaminate materials can be linked with two characteristic features of structure. These are the layer pair spacing and the grain size. For the case of nanolaminates synthesized by physical vapor deposition processes, the layer spacing corresponds with the repeating sequence of layer pairs and can be referred to as composition wavelength. The grain size is the average width of the tapered columnar structure along the growth direction. Since the mechanical properties of strength and hardness are known to functionally vary with the separation between dislocations in crystalline materials, both structural features can potentially contribute to the total interfacial area and the characteristic separation of interfaces that mitigate dislocation motion. In this investigation, the individual contribution of layer pair spacing and grain size to the total interfacial structure are each quantified in an assessment of strength and hardness. A model is proposed for the total interfacial area of the material volume under plastic deformation that can quantify the interfacial area contribution from the layer pairs and the grain size. It is anticipated that each structural feature can potentially dominate the plastic deformation of the nanolaminate as dependent upon the specific layer pair spacing, the grain size, and the extent of plastic deformation.
With the continuing scaling in device sizes, sputtered copper is not expected to achieve the conformality and surface coverage requirements to be an effective seed layer for electrochemical deposition in sub-32nm features. Additionally, the metallization demands of high aspect ratio TSVs in 3D-architectures pose similar challenges. In this work, a manufacturable low temperature Cu PE-ALD process has been developed employing a novel O and F-free precursor. The ALD process conditions are correlated with key film properties, including deposition rate, composition, step coverage, and resistivity. Additionally, the influence of precursor substituents on the deposition rate and preliminary integration performance are discussed.
The evolution of carbon onion structure from spherical to polyhedral is correlated with changes in the sp3/sp2 ratio as a function of increasing synthesis temperature using electron energy loss spectroscopy, scanning electron microscopy, and high resolution electron microscopy. Results that are obtained using asymmetric f-variance versus symmetric Gaussian deconvolution of electron energy loss spectra are compared. The possibility of a separate peak at 287 eV is discussed.
GeSn alloy nanocrystals were formed by implantation of Ge and Sn ions into an amorphous SiO2 matrix and subsequent thermal annealing. High resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM) with a high angle annular dark field (HAADF) detector were used to show that phase-segregated crystalline bi-lobe nanocrystals were formed. Rapid melting and solidification using a single excimer laser pulse transformed the bi-lobe structure into a homogeneously mixed amorphous structure. Raman spectroscopy was used to monitor the crystalline nature and approximate grain size of the Ge portion of the nanocrystals after each heat treatment, and the Raman spectra were compared with the TEM images.
A novel field effect transistor, based on the Screen Grid Field Effect Transistor concept, is proposed with an integrated Coulter Counter pore for amplification of the sensing signal. 3D TCAD simulations are performed on the use of the Coulter Counter Field Effect Transistor (CCFET) to detect the Influenza A virus. The gate of the transistor is the pore through which the bioparticles pass. This passage causes a change in the electrostatic conditions of the gate and thus changes the source-drain current, similar to ISFET operation. The structure of the CC-FET is optimised for bio-sensing and multi-particle passage through the gate hole is simulated. TCADresults show that the CC-FET is capable of multi-particle and particle size detection.
We present femtosecond mid-infrared (mid-IR) studies of the broadband low-energy response of individualized (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed in these semiconducting tubes around 200 meV photon energy. The transition energy and broadly sloping spectral shape are characteristic of quasi 1D intra-excitonic transitions between different relative-momentum states. Our result yields a value of the intra-excitonic absorption cross section of σ∥MIR≈4×10-5.
As the design rule of memory devices is scaled down to nanoscale, the number of the CMP process has increased considerably due to the complexity of integration scheme. The CMP for isolation has increased significantly because the isolation process of metal contact plugs and damascene metallization at nanoscale has been successfully enabled by the CMP. The CMP selectivity, which depends strongly on the chemistry of the slurry, must be tuned for the various new materials. Recently, in order to get over the limitation in lateral shrinkage of the memory device, several emerging applications have been investigated extensively. A vertical integration needs the new CMP process such as high removal rate Cu CMP. Next generation memories need the CMP process for new materials such as GeSbTe, conductive oxide, and magnetic materials. Since any nano-size scratch will be a killer defect at the nanoscale memory, both the CMP equipment and the consumables must be maintained with tighter degree of control specifications.
Single layers of graphene (SLG) mechanically exfoliated from highly oriented pyrolytic graphite and deposited on SiO2/Si were irradiated with C+ ions at different fluences (from 1013 to 1014 cm-2), in order to modify the transport properties in controlled way. Using a method based on scanning probe microscopy, local measurements of the electron mean free path (l) have been carried out both on pristine and ion irradiated SLG. A lateral inhomogeneity of l was found in both cases, with an increasing spread in the distribution of l for larger fluences. Before irradiation, the spread was explained by the inhomogeneous distribution of charged impurities on SLG surface and/or at the interface with SiO2. After irradiation, lattice vacancies cause a local reduction of l in the damaged regions.
Advanced fission-based reactors challenge our ability to fully understand environment–materials reactions in terms of fundamental stability and kinetics, including the influences of composition, microstructure, and system design, and to predict associated long-term performance. This article briefly describes corrosion reactions and the processes by which such are managed for several elevated-temperature environments associated with advanced reactor concepts: helium, molten Pb–Bi, fluorides, and supercritical water. For most of the subject environments, corrosion resistance critically depends on the ability to form and maintain protective surface layers. Effects of corrosion on mechanical behavior can be from thermally and chemically induced changes in microstructures or from environmental effects on cracking susceptibility. In most cases, the simultaneous effects of chemical reactivity and radiation have not been fully addressed, nor has much attention been paid to newly emerging alloy compositions or the effects of substantially increased operating temperatures.
The oxygen redox couple in adsorbed water films acts as an “electrochemical ground” that tends to pin the Fermi level in solids at the electrochemical potential of the redox couple. We discuss this effect on the conductivity of diamond; the conductivity type of sp2-based carbons including single-walled, semiconducting carbon nanotubes and graphene; the photoluminescence of GaN and ZnO; and the contact charging of metals.