To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report the experimental study of the structural and magnetotransport properties of chromium-doped indium oxide (In2O3:Cr) thin films using x-ray diffractometer, and by measuring the resistivity and Hall effect as a function of temperature in various magnetic fields. The In2O3:Cr diluted magnetic semiconductor thin films were grown under different partial oxygen pressures (Po2) on sapphire substrates using pulsed laser deposition (PLD) technique. Observed expansions in lattice parameter and crystal size in these films with increase in oxygen growth pressure are traceable to the reduction in oxygen vacancies. A redshift of the absorption edges of the samples with increase in oxygen growth pressure is attributed to the significant improvement in crystallinity. The exchange interaction between the electron spins in the conduction band and the spins of the Cr 3d electrons was evident in the anomalous Hall effect (AHE), which persisted up to 300 K. An analysis of the dc electrical transport in the films was carried out using hopping conduction and ionized impurity scattering models.
We report high-mobility rubrene single-crystal field-effect transistors with ionic-liquid electrolytes used for gate dielectric layers. As the result of fast ionic diffusion to form electric double layers, their capacitances remain more than 10 μF/cm2 even at 0.1 MHz. With high carrier mobility of 1.2 cm2/Vs in the rubrene crystal, pronounced current amplification is achieved at the gate voltage of only 0.2 V, which is two orders of magnitude smaller than that necessary for organic thin-film transistors with dielectric gate insulators. The results demonstrate that the ionic-liquid/organic semiconductor interfaces are suited to realize low-power and fast-switching field-effect transistors without sacrificing carrier mobility in forming the solid/liquid interfaces.
Stimulus responsive liquid crystal nanorods, 60 μm in length and 200 nm in diameter, were fabricated by a template synthesis technique. The liquid crystal, RM 257, is a reactive monomer which polymerizes with the application of UV light. After polymerization the liquid crystal's orientational order is permanently “frozen”. Therefore, the subsequent structures are temperature independent after curing. In this study the liquid crystal was confined in the pores of Anopore membranes before curing, which results in rod structures after photo-polymerization. After fabrication, the rods were observed under the application of both AC and DC electric fields. DC fields were noted by either up and down or translational movement of the rods. Application of AC fields resulted in random movement of the rods.
InGaN alloys are widely researched in diverse optoelectronic applications. This material has also been demonstrated as a photovoltaic material. This paper presents the study to achieve optimum electrically active p-type InGaN epi-layers. Mg doped InGaN films with 20% In composition are grown on GaN templates/sapphire substrates by MOCVD. It is found that the hole concentration of p-type InGaN depends strongly on the Mg flow rate and V/III molar ratio and hole concentration greater than 2×1019 cm−3 has been achieved at room temperature. The optimum activation temperature of Mg-doped InGaN layer has been found to be 550-600°C, which is lower than that of Mg-doped GaN. A solar cell was realized successfully using the InGaN epi-layers presented here.
Np-237 (τ1/2 = 2.1 million years) is a potentially important contributor to the total dose for a geologic repository under oxidizing conditions. Further, the Np5+-complexes are mobile aqueous species. Several processes may limit the transport of Np, as well as other actinides: i) the precipitation of Np-solids, ii) the incorporation of Np into secondary uranium phases, and iii) the sorption and reduction of Np-complexes on Fe-oxide surfaces. This study utilizes quantum-mechanical calculations to determine the most energetically favorable Np5+-incorporation mechanisms into uranyl phases, where Np5+-substitution for U6+ requires a charge-balancing mechanism, such as the addition of H+ into the structure. Experimental results suggest that uranyl structures with charged interlayer cations have a greater affinity for Np5+ than uranyl structures without interlayer cations. Therefore, the uranyl silicate phase boltwoodite (KUO2(SiO3OH)(H2O)1.5) is selected for this computational investigation. The charge-balancing mechanisms considered to occur with substitution include: i) addition of H+, ii) substitution of Ca2+ for K+, and iii) substitution of P5+ for Si4+. While the incorporation energy results (1-3 eV)are higher than energies expected based on current experimental studies, solid-solution calculations are used to estimate the limit of Np incorporation for the P5+ substitution mechanism (10 ppm at ̃100°C). The electronic structure of the boltwoodite structure provides insight into the electron density that may be involved in the incorporation of Np into the structure.
In Belgium, the Boom Clay formation is considered to be the reference formation for HLW disposal R&D. Assessments to date have shown that the host clay layer is a very efficient barrier for the containment of the disposed radionuclides. Due to absence of significant water movement), diffusion - the dominant transport mechanism, combined with generally high retardation of radionuclides, leads to extremely slow radionuclide migration. However, trivalent lanthanides and actinides form easily complexes with the fulvic and humic acids which occur in Boom Clay and in its interstitial water. Colloidal transport may possibly result in enhanced radionuclide mobility, therefore the mechanisms of colloidal transport must be better understood. Numerical modeling of colloidal facilitated radionuclide transport is regarded an important means for evaluating its importance for long-term safety.
The paper presents results from modeling experimental data obtained in the framework of the EC TRANCOM-II project, and addresses the migration behavior of relevant radionuclides in a reducing clay environment, with special emphasis on the role of the Natural Organic Matter (NOM) [1]. Percolation type experiments, using stable 14C-labelled NOM, have been interpreted by means of the numerical code HYDRUS-1D [2]. Tracer solution collected at regular intervals was used for inverse modeling with the HYDRUS-1D numerical code to identify the most likely migration processes and the associated parameters. Typical colloid transport submodels tested included kinetically controlled attachment/detachment and kinetically controlled straining and liberation.
We report on the optical properties of Ho doped KPb2Cl5 (Ho: KPC) for potential applications as an infrared (IR) solid-state gain medium. The investigated crystal was synthesized from commercial starting materials of PbCl2, KCl, and HoCl3 followed by several purification steps including directional freezing, zone-refinement, and chlorination. The Ho: KPC crystal was subsequently grown by Bridgman technique. Following optical excitation at 885 nm, several IR emission bands were observed at room-temperature with average wavelengths at 1.07, 1.18, 1.35, 1.65, 2.00, 2.94, and 3.96 μm. The emission at 3.96 μm originated from the 5I5 -> 5I6 transitions of Ho3+ and was further evaluated for possible applications in mid-IR lasers. The decay time of the 5I5 excited state was measured to be 5.0 ms at room-temperature. The long 5I5 lifetime is favorable for laser applications and indicates that non-radiative multi-phonon relaxations are small in Ho: KPC. Based on a Judd-Ofelt analysis, the emission quantum efficiency was determined to be near unity resulting in a peak emission cross-section of 0.62×10-20 cm2 at 3.96 μm. A drawback for laser applications is the long decay time of the lower 5I6 state with a value of 4.8 ms . Since the 3.96 μm transition terminates in the 5I6 level, its long lifetime will lead to population bottlenecking, which limits possible mid-IR lasing to pulsed and quasi-cw operation.
In the context of the present Spanish ‘once-through’ nuclear fuel cycle, the need arises to complete the geological repository reference concept with a spent fuel canister final design. One of the main issues in its design is selecting the inner material to be placed inside the canister, between the steel walls and the spent fuel assemblies. The primary purpose of this material will be to avoid the possibility of a criticality event once the canister walls have been finally breached by corrosion and the spent fuel is flooded with groundwater. That is an important role because the increase in heat generation from such an event would act against spent fuel stability and compromise bentonite barrier functions, negatively affecting overall repository performance. To prevent this possibility a detailed set of requirements for a material to fulfil this role in the repository environment have been devised and presented in this paper. With these requirements in view, eight potentially interesting candidates were selected and evaluated: cast iron or steel, borosilicate glass, spinel, depleted uranium, dehydrated zeolites, haematite, phosphates, and olivine. Among these, the first four materials or material families are found promising for this application. In addition, other relevant non-performance-related aspects of candidate materials, which could help on decision making, are also considered and evaluated.
In the present work a fiber-optic loop-sensor is designed and tested for possible applications in structural health monitoring of composite materials. It is known that bending an optical fiber beyond a critical curvature leads to loss of optical power through the curved region. The optical power loss depends on the radius of curvature of the loop. The optical power can be measured by a photodetector and a change in the power due a change to the curvature can be measured. In the present research optical fiber-optic loop-sensors are developed that can exploit this concept. Single-mode optical fiber sensors having different loop radii, from 6-10 mm, are fabricated and calibrated for applied strain on the loop. The calibration is carried out using a 0.098 N load cell and a computer controlled translation stage having 50 nm step resolution. Results show that the sensors provide highly repeatable curves for loading and unloading cycles. Smaller loop radii lead to higher optical power losses, resulting in higher sensitivity. Calibration results show that such sensors can be used in structural health monitoring applications. In this approach the coating and cladding of optical fibers are maintained intact; therefore, the sensors are robust and can withstand several composites fabrication processes.
Nanocrystalline 8 and 12 mol % yttria stabilized zirconia (YSZ) powders with fluorite-type structure were synthesized by a precipitation method. Powders were characterized by X-ray diffraction, differential scanning calorimetry, thermogravimetry, and nitrogen adsorption analyses. Precipitation produced amorphous powder which crystallized at approximately 450-470 °C into a cubic phase with a crystallization enthalpy ranging from 13.7 ± 0.6 kJ/mol for 8YSZ to 11.7 ± 0.5 kJ/mol for 12YSZ. Integral heat of water adsorption at room temperature measured on 8YSZ was -63 ± 2 kJ/mol for coverage 4.1 ± 0.1H2O/nm2. Drop solution calorimetry experiments were performed in a custom made Calvet twin calorimeter using sodium molybdate 3Na2O 4MoO3 solvent. The preliminary values for surface enthalpies of hydrated surfaces are 0.8 ± 0.1 J/m2 for 8YSZ and 1.3 ± 0.1 J/m2 for 12YSZ.
Electrical techniques based on capacitance and conductance measurements are powerful tools for interface characterization in semiconductor heterostructures. We here detail their application to the study of the heterointerface formed between hydrogenated amorphous silicon (a-Si:H) and crystalline silicon (c-Si). The main parameters governing the device applications are the conduction and valence band mismatch, and the density of interface states. The presence of a high interface states density can be revealed by capacitance versus temperature and frequency measurements. For very high quality interfaces that are required for instance to reach high conversion efficiencies in solar cells, the usual measurements performed in the dark and at zero or reverse bias are not sensitive enough. We show that the sensivity to interface states can be enhanced by using capacitance measurements under illumination and at a forward bias close or equal to the open-circuit voltage. In this case, the measured capacitance is determined by the diffusion of free carriers in c-Si and limited by recombination at the interface. Regarding the determination of band offsets, the method using a plot of the inverse square capacitance as a function of bias to determine the intercept of the extrapolated linear region is shown to lead to errors even in the absence of any interface charge. This is due to the presence of a strong inversion layer in c-Si at the interface, the effect of which has been ignored so far in the literature. The presence of this strong inversion layer is evidenced from planar conductance measurements on (n) a-Si:H/(p) c-Si structures. We emphasize that these measurements are very sensitive to details of the band structure profile. In particular, it is shown that the temperature dependence of the sheet electron density allows the determination of the conduction band offset between a-Si:H and c-Si with a good precision. We find 0.15 ± 0.04 eV.
The unique properties of carbon-nanotube (CNT)-doped polymers have generated several promising applications including gas sensors, high-strength/light-weight materials, and electromagnetic interference shielding. The ability to process CNT-doped materials into complex architectures may enable further advancement of these devices. We have developed a direct-write technique for processing CNT-doped poly(methyl methacrylate) (PMMA) into 3D arrays of precisely-positioned fibers with micro- and sub-microscale diameters. In this method, a programmable micromanipulator-controlled syringe was loaded with solvated CNT/PMMA and utilized to draw an array of freely-suspended solution filaments on a substrate in a “connect-the-dots” fashion. As the filaments are drawn, they are thinned by surface tension-driven necking as they dry and form solid fibers. The degree of thinning can be controlled by varying the viscosity of the solution, which acts to resist the necking while the volatile solvent evaporates and solidification occurs. Multiple fibers were drawn to investigate the effects of several factors on fiber diameter and process yield. These variables included fiber length (4, 8, and 18 mm), fiber drawing velocity (5 and 20 mm/s), polymer concentration in solution (22 and 24% by wt.), and CNT concentration in solution (0, 0.5, 1, and 1.5% by wt.), with the latter two of these variables strongly influencing solution viscosity. Measurement of the fibers via scanning electron microscopy (SEM) revealed several trends: Fiber diameter was not influenced by CNT concentration, but increased with increasing PMMA concentration (P<0.001), increasing drawing rate (P<0.01), and decreasing fiber length (P<0.001), with fiber diameter ranging from 538 nm to >100 μm. Furthermore, fiber yield exceeded 75% for all tested solutions except for the lowest viscosity CNT-doped solution (24% PMMA/0.5% CNT, η=50.1 Pa*s), which experienced capillary breakup prior to solidification. The conductivities of direct-write PMMA/CNT fibers ranged from <10-7to 0.15 S/m, with shorter fibers having higher conductivities (P<10.005). Also, fibers drawn from solutions with 1.0% CNTs had higher conductivities that those drawn from solutions with 0.5% or 1.5% CNTs (P<0.01). This nonlinear trend was further investigated by cleaving fibers in liquid nitrogen and imaging their cross-sections with an SEM. This analysis illustrated that the CNTs, which were functionalized to remain dispersed in the solvent, tended to randomly aggregate within the polymer-fiber matrix, particularly for fibers drawn from solutions containing 1.5% CNTs. In conclusion, CNT/PMMA fibers were successfully drawn with the direct-write technique and CNT doping had no significant influence on fiber diameter or yield compared with fibers drawn from PMMA homopolymer. However, the CNTs were found to strongly aggregate when drawn from solutions loaded at high concentrations (1.5%), thereby hindering electrical transport.
BaCe0.25Zr0.60Co0.15O3-x (BCZC) was synthesized via oxalate co-precipitation route. Material was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Catalytic activity of BCZC with respect to hydrogen generation via methanol partial oxidation was determined. Conductivity of the material at different temperatures and under different environments was determined by AC impedance spectroscopy. XRD and TEM results indicated that BCZC was synthesized as a homogeneous cubic phase material. Catalyst tests indicated that BCZC was catalytically active towards hydrogen generation and AC impedance results were positive enough to warrant further electrochemical studies.
We herein report a facile, ‘green’ one- step synthesis of a series of monodispersed water-soluble selenide nanoparticles at room temperature. The capping ligands used include, cysteine, methionine, ascorbic acid and starch which function as agents of solubilisation, stabilization and conjugation sites for biomolecules. The synthetic approach involves the addition of an appropriate volume of selenide ion produced via the reduction of selenium powder in water to an aqueous solution containing the ligand- metal salt (MCl2 M = Zn or Cd). Optical spectroscopy shows that the particles are of high quality while the transmission electron microscopy (TEM) of the samples shows variation in shapes ranging from dots to rods of high and low aspect ratios.
Organic field-effect transistors (OFETs) consisted of vacuum-evaporated diethynyl aryl derivatives were prepared and the device characteristics were evaluated. The fabricated OFETs showed typical p-type characteristics for diethynyl naphthalene derivative with two end naphthyl groups. By optimizing the fabrication process, the device exhibited a high field-effect hole mobility up to 0.12 cm2V−1s−1 and a high on/off current ratio of 3.3×105. On the other hand, OFETs showed typical n-type characteristics for diethynyl aryl derivative with two end heptafluoronaphthyl groups. We have observed clear changes from p-channel to n-channel conductions in OFETs by chemically modifying diethynyl aryl derivatives.
Magnetic separation of target cells from mixtures, such as peripheral blood and bone marrow, has considerable practical potential in research and medical applications. Among the current cell separation techniques, magnetic cell separation using immunomagnetic particles has been routinely applied and has proven rapidness and simplicity. Magnetospirillum magneticum AMB-1 synthesizes intracellular nano-sized bacterial magnetic particles (BacMPs) that are individually enveloped by a stable lipid bilayer membrane. BacMPs, which exhibit strong ferrimagnetism, can be collected easily with commercially available permanent magnets. In this study, a novel magnetic nanoparticle displaying protein G (protein G-BacMPs) was fabricated, and one-step cell separation for direct cell separation from whole blood was performed using the protein G-BacMPs. B lymphocytes (CD20+ cells), which cover less than 0.3×10−2 % of whole blood cells, were separated with 93% purity using protein G-BacMPs binding with anti-CD20 monoclonal antibodies. The results of this study demonstrate the utility of protein G-BacMPs and the magnetic cell separation approach based on protein G-BacMPs in numerous applications.
Three-dimensional SiGe nanostructures grown on Si using molecular beam epitaxy exhibit photoluminescence (PL) in the important spectral range of 1.3–1.6 μm. At a higher level of photo-excitation, thermal quenching of the PL intensity is suppressed and the previously accepted type II energy band alignment at Si/SiGe cluster hetero-interfaces no longer controls radiative carrier recombination. Instead, a dynamic type I energy band alignment governs the strong decrease in carrier radiative lifetime and further increase in the luminescence quantum efficiency. In contrast to the strongly temperature dependent and slow radiative carrier recombination found in bulk Si, Auger mediated PL emanating from the nanometer-thick Si layers is found to be nearly temperature independent with a radiative lifetime approaching 10−8 s, which is comparable to that found in direct band gap III-V semiconductors. Such nanostructures are thus potentially useful as CMOS compatible light emitters and in optical interconnects.
The nitride-based SONOS cell, for its excellent scalability and process simplicity, is the candidate to push the scaling roadmap for FLASH memories beyond the limit imposed on floating-gate memories by the electrostatic interference between adjacent cells. The traditional SONOS cell consists of a nitride layer (the storage element) encapsulated by two SiO2 layers which isolate the nitride layer from the Si substrate and the poly-Si gate (Poly-Si/SiO2/Si3N4/SiO2/c-Si). However, the thick tunnel oxide necessary to meet the retention requirements imposes a severe limit on the erase performance because of the erase saturation phenomenon. One possibility to guarantee both the erase and the retention performance is the replacement of the top SiO2 layer with materials of higher dielectric constant (high-k dielectric). The presence of a high-k dielectric reduces the electric field across the top dielectric, thus decreasing the unwanted parasitic electron injection from the gate during the erase operation. This will allow the cell to erase deep so to meet a basic requirement for Gigabit multilevel NAND memories. The introduction of high-k materials in the SONOS stack is unfortunately not straightforward. One problem is the Fermi-level pinning at the poly-Si/high-k interface. Another problem is the morphological changes the high-k material undergoes during the device fabrication thermal budget. These changes can modify the k-value and affect the band offset between gate and high-k material. The results may, in both cases, be the decrease of the barrier for electron injection from the gate and, as a consequence, the deterioration of the erase performance. In this paper we study the effect of gate material and of the morphological transformation associated with the high-k post deposition anneal on the erase and the retention behaviour of nitride-based cells. Two different high-k dielectrics are investigated: Al2O3 (which has already been found to be able to significantly improve the erase operation, guaranteeing at the same time excellent endurance and sufficient bake retention) and HfAlO. We show that both for Al2O3 and HfAlO a trade-off exists between erase and retention, higher PDA temperatures being beneficial for erase but detrimental for retention. We also discuss the effect of Fermi level pinning and poly-Si depletion on the erase behaviour and compare the erase performances of several PVD- and AVD-deposited metal gates.
We have carried out fluorescence lifetime measurements using time correlated single photon counting (TCSPC) for a cyanine dye near the silicon surface. The measurements have been carried out for both (100) and (111) crystal orientations of the silicon surface, showing the dependence of energy transfer rate as a function of the separation between the dye monolayer and the silicon surface. Langmuir Blodgett fatty acid layers were used to create a multistep structure and a monolayer of a cyanine dye was deposited on top of the stepped structure. Spectroscopic ellipsometry has been used to measure the thickness of the fatty acid steps and provide an accurate estimate of the distance of the dye monolayer to the silicon surface. Time resolved emission spectra and fluorescence decay curves were measured with a single photon picosecond time correlated system. We find that the fluorescence lifetime of the dye monolayer is significantly shortened when present close to the silicon surface signifying efficient energy transfer. The dissipation of the excitation energy near silicon is explained using the classical theory developed for metals and a deviation is observed for distances close to the silicon surface (d<5nm). The model can be reconciled with the observed data by modifying the value of the silicon extinction coefficient which can provide an insight into the energy transfer process in the near field dye-silicon interaction.