To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Master the usage of s-parameters in signal integrity applications and gain full understanding of your simulation and measurement environment with this rigorous and practical guide. Solve specific signal integrity problems including calculation of the s-parameters of a network, linear simulation of circuits, de-embedding, and virtual probing, all with expert guidance. Learn about the interconnectedness of s-parameters, frequency responses, filters, and waveforms. This invaluable resource for signal integrity engineers is supplemented with the open-source software SignalIntegrity, a Python package for scripting solutions to signal integrity problems.
Discover the techniques of analog filter designs and their utilization in a large number of practical applications such as audio/video signal processing, biomedical instrumentation and antialiasing/reconstruction filters. Covering high frequency filter design like active R and active C filters, the author tries to present the subject in a simpler way as a base material for analog filter designs, as well as for advanced study of continuous-time filter designs, and allied filter design areas of current-mode (CM) and switched capacitor filters. With updated basic analog filter design approaches, the book will provide a better choice to select appropriate design technique for a specific application. Focussing mainly on continuous time domain techniques, which forms the base of all other techniques, this is an essential reading for undergraduate students. Numerous solved examples, practical applications and case studies on audio/video devices, medical instrumentation, control and antialiasing/reconstruction filters will provide ample motivation to readers.