In this final chapter, we conclude the main part of this book with a selection of more advanced topics. Although primarily relating to the finite element method, hybridization with both the MoM and FDTD will be discussed, so as a final chapter it appropriately draws together these three apparently quite different methods.
The previous chapter concluded with one method for terminating open-region problems with radiation boundary conditions, specifically the use of an absorbing boundary condition. An alternative to the application of an approximate local ABC is to use an exact global RBC, the MoM; this leads to the hybrid FEM/MoM formulation. This approach has proven very powerful for specialized applications, and an application to radiation exposure assessment near a base-station antenna will be presented.
To this point in this book, all the finite element work has proceeded in the frequency domain; in this chapter, time domain finite element analysis (FETD) is discussed, and a connection made with the FDTD, which is explored in detail, revisiting the one-dimensional wave analysis problem introduced in Chapter 9 in the time domain. This connection permits the consideration of hybrid FETD/FDTD schemes.
We conclude the chapter with a discussion on two issues which impact on efficiency. Firstly, sparse matrix storage schemes are briefly outlined, and secondly, error estimation and the use of mesh adaptation based on this is discussed.
The coverage in this chapter is at a higher level than in much of the rest of this book.