To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Chapter 6 deals with 2-D laminar boundary-layer instabilities and their control. It covers the full range of Mach numbers from incompressible to hypersonic. Boundary-layer instabilities leading to turbulence onset is of great practical importance. This chapter reviews methods of analysis of boundary-layer stability and illustrates several linear and nonlinear mechanisms that can play a role in the breakdown to turbulence. Such understanding is intrinsic to the methods of boundary-layer instability control that are presented in the chapter. Both passive and active flow control approaches are presented.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Chapter 1 provides background and motivation for flow control that is used to achieve a positive outcome, such as drag reduction, enhanced mixing, reduced acoustic levels, or other performance metrics. It emphasizes exploiting fluid instabilities as a means of amplifying small flow actuator inputs in both passive and active approaches. Examples are introduced for a variety of flow fields. These are later detailed in subsequent chapters.
Chapter 3 focuses on the control of bluff-body wakes, where a bluff body is generally categorized as one whose length in the flow direction is approximately the same as its height. Such shapes exhibit a wide wake on the scale of the body height, with aerodynamic drag that is dominated by a low-pressure region that forms in the near wake of the body. Bluff body wakes are complex and highly unsteady, involving boundary layer flow separation and multiple shear layer interactions. The control of bluff body aerodynamics has practical implications to airfoils at high angles of attack, aircraft landing gear, ground vehicles, and buildings and structures. Methods of control that key on the wake instabilities are presented.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.
Thoroughly revised and expanded, the new edition of this established textbook equips readers with a robust and practical understanding of experimental fluid mechanics. Enhanced features include improved support for students with emphasis on pedagogical instruction and self-learning, end-of-chapter summaries, 127 examples, 165 problems, refined illustrations, as well as new coverage of techniques in digital photography, frequency analysis of signals and the measurement of forces. It describes comprehensively classical and modern methods for flow visualisation and measuring flow rate, pressure, velocity, temperature, concentration, forces and wall shear stress, alongside supporting material on system response, measurement uncertainty, signal analysis, data analysis, optics, laboratory apparatus and laboratory practice. With enhanced instructor resources, including lecture slides, additional problems, laboratory support materials and online solutions, this is the ideal textbook for senior undergraduate and graduate students studying experimental fluid mechanics and is also suitable for an introductory measurements laboratory. Moreover, it is a valuable resource for practising engineers and scientists in this area.