To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we consider the optimization of scalar filters for single-input single-output (SISO) channels. A number of optimization problems which arise in different contexts will be considered. In Sec. 10.2 we begin with the digital communication system of Fig. 10.1 for a fixed channel H(jω). We consider the optimization of the continuous-time prefilter (transmitted pulse shape) and postfilter (equalizer) to minimize the mean square reconstruction error under the zero-forcing condition on the product F(jω)H(jω)G(jω). The zero-forcing condition does not uniquely determine the above product. It will be shown that the optimal product (under the zero-forcing condition) is the so-called optimal compaction filter of the channel (Sec. 10.2.3). Usually the filters that result from the above optimization problem are ideal, unrealizable, filters and can only be approximated. The equivalent digital channel therefore requires further equalization. In Sec. 10.3 we consider the problem of jointly optimizing a digital prefilter–postfilter pair to minimize the mean square error. Both the zero-forcing and the non-ZF situation are considered.
Section 10.4 revisits Fig. 10.1 for an arbitrary channel H(jω) from a more general viewpoint and formulates some general conditions on the filters F(jω) and G(jω) for optimality. The most general forms of the postfilter and prefilter for optimality are established. These forms were first derived by Ericson [1971, 1973]. Using these results we can argue that the optimization of the continuoustime filters in Fig. 10.1 can always be reformulated as the optimization of a digital prefilter–postfilter pair.
Digital communication systems have been studied for many decades, and they have become an integral part of the technological world we live in. Many excellent books in recent years have told the story of this communication revolution, and have explained in considerable depth the theory and applications. Since the late 1990s particularly, there have been a number of significant contributions to digital communications from the signal processing community. This book presents a number of these recent developments, with emphasis on the use of filter bank precoders and equalizers. Optimization of these systems will be one of the main themes in this book. Both multiple-input multiple-output (MIMO) systems and single-input single-output (SISO) systems will be considered.
The book is divided into four parts. Part 1 contains introductory material on digital communication systems and signal processing aspects. In Part 2 we discuss the optimization of transceivers, with emphasis on MIMO channels. Part 3 provides mathematical background material for optimization of transceivers. This part can be used as a reference, and will be useful for readers wishing to pursue more detailed literature on optimization. Part 4 contains eight appendices on commonly used material such as matrix theory, Wiener filtering, and so forth. Thus, while it is assumed that the reader has some exposure to digital communications and signal processing at the introductory level, there is plenty of review material at the introductory level (Part 1) and at the advanced level (Parts 3 and 4).
Are you involved in implementing wireless mesh networks? As mesh networks move towards large-scale deployment, this highly practical book provides the information and insights you need. The technology is described, potential pitfalls in implementation are identified, clear hints and tips for success are provided, and real-world implementation examples are evaluated. Moreover, an introduction to wireless sensor networks (WSN) is included. This is an invaluable resource for electrical and communications engineers, software engineers, technology and information strategists in equipment, content and service providers, and spectrum regulators. It is also a useful guide for graduate students in wireless communications, and telecommunications.
Ensuring secure transmission and good quality of service (QoS) in ad hoc wireless networks are key commercial concerns. Focusing on practical potential solutions, this text covers security and QoS in these networks. Starting with a review of the basic principles of ad hoc wireless networking, coverage progresses to vulnerabilities, and the requirements and solutions necessary to tackle them. QoS in relation to ad hoc networks is covered in detail, with specific attention to routing, QoS support in unicast communication, and recent developments in the area. Secure routing, intrusion detection, security in WiMax networks and trust management are also covered, the latter being based on principles and practice of key management and authentication in distributed networks. Representing the state-of-the-art in ad hoc wireless network security, this book is a valuable resource for researchers in electrical and computer engineering, as well as practitioners in the wireless communications industry.
Are you involved in designing the next generation of wireless networks? With spectrum becoming an ever scarcer resource, it is critical that new systems utilize all available frequency bands as efficiently as possible. The revolutionary technology presented in this book will be at the cutting edge of future wireless communications. Dynamic Spectrum Access and Management in Cognitive Radio Networks provides you with an all-inclusive introduction to this emerging technology, outlining the fundamentals of cognitive radio-based wireless communication and networking, spectrum sharing models, and the requirements for dynamic spectrum access. In addition to the different techniques and their applications in designing dynamic spectrum access methods, you'll also find state-of-the-art dynamic spectrum access schemes, including classifications of the different schemes and the technical details of each scheme. This is a perfect introduction for graduate students and researchers, as well as a useful self-study guide for practitioners.