To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The ability to engage in some form of communication is essential for any social species. Communication generally relies on species-specific adaptations that provide animals with a cognitive tool to pass on messages from one conspecific to the other. This means that communication between members of different species is relatively rare and potentially requires qualitatively different cognitive abilities. This form of communication is not only challenging due to the fact that different species may rely on distinct sets of codes to convey messages but also because the primary modality used for this purpose may be different. Dogs represent a special case in the animal kingdom as they have been uniquely adapted to be receptive to the communicative signals of a species relatively distant in terms of their genome: humans. In this chapter, we will first focus on those characteristics of canids’ intraspecific communication that are shared between the dog and their phylogenetically closest relative, the wolf. Similarities in these forms of communication are likely the result of the common ancestry of the two species. Next, we turn to describing those attributes of canine communication that selectively pertain to how dogs communicate with their conspecifics. Finally, we discuss the ubiquitous nature of heterospecific communication between dogs and humans.
Episodic memory refers to the ability to recollect personal past events, allowing mental time travel.In contrast, semantic memory has been defined as the storage of general facts about the world. The field of comparative psychology has adopted this distinction in order to study what nonhuman animals recall about their past. The aim in this chapter is to reflect on the concept of episodic memory as well as on the experimental approaches used in comparative psychology to study this ability. A critical analysis of both the conceptualization of episodic memory and the experimental paradigms is provided.
This chapter reviews available evidence on cognitive contributions to orangutan innovation and problem-solving. Evidence derives from orangutans in three living conditions (wild, captive, rehabilitation), and as such includes spontaneous as well as experimentally elicited innovations. Reviewed are the range and quality of orangutans’ innovations and problem-solving, including instigating factors, cognitive complexity, and facilitating–inhibiting factors.
People remember specific earlier events that happened to them by using episodic memory. Accordingly, researchers have sought to evaluate the hypothesis that nonhumans retrieve episodic memories. The central hypothesis of an animal model of episodic memory proposes that, at the moment of memory assessment, the animal retrieves a memory of the specific earlier event. Testing this hypothesis requires the elimination of the hypothesis that animals solve such problems by using non-episodic memory. Most of the research on event memory in nonhumans focuses on memory of a single event. Here, I describe approaches that we have used with rats to move from episodic memory of one event to two events, to many events, and to sequentially ordered events. These studies focus on source memory, binding of episodic memories, remembering items-in-context, and the replay of episodic memories. Connections between episodic memory and hippocampal replay are explored. These approaches may be used to explore the evolution of cognition.
Humans often appear to defy principles of economic "rationality" when making decisions, by falling prey to a suite of choice biases including over-weighting immediate gratification, avoiding risk, treating identical options differently depending on whether they are perceived as a relative loss or gain, or attaching more value to objects in their possession. Here we examine what animals can tell us about these choice patterns. First, we provide an overview of different theoretical frameworks for rational decision making from psychology, economics, and biology. Next, we review empirical work examining how different species make decisions and discuss how many potentially puzzling patterns of decision making may be biologically adaptive when considering the environment in which they are made. Finally, we propose that integrating various theoretical perspectives with comparative data can elucidate the ultimate origins of variations in decision-making strategies across species and provide a new framework to illuminate the adaptive value of these strategies.
Over the past quarter of a century, scientists have attempted to answer the question of whether humans are unique in their self-reflective abilities, or whether versions of this might exist in nonhuman animals as well. This chapter explores the research on whether nonhuman primates (hereafter, primates) have the ability to monitor and control their own knowledge states, or metacognition. The chapter describes the two main paradigms that have traditionally been used to investigate this question, as well as their associated variations and limitations. This is followed by a summary of what has been found to date, with respect to metacognitive abilities across the primate order. The chapter concludes with a brief discussion of the questions that remain and areas for future investigation.
Many animals cooperate even with unrelated individuals in various contexts, like providing food or allogrooming others. One possibility to explain the evolution of such apparently altruistic behaviour is reciprocity. In reciprocal cooperative interactions, individuals help those partners that have been previously cooperative and therefore exchange favours. This conditional help follows rules like “I help you because you helped me.” These rules are often assumed to be so cognitively demanding that they may be limited to humans. In this chapter, I will shed light on the cognitive underpinnings of reciprocal cooperation by reviewing work on one of the yet best-studied animal in this research area, the Norway rat (Rattus norvegicus). Various studies have demonstrated that Norway rats reciprocally exchange different goods and services. They most likely form attitudes toward social partners that are based on the cooperation level of the last encounter, which they remember over long time spans. Cooperation decisions based on attitudes appear cognitively less complex than calculations of received and given favors. Thus, reciprocal cooperation based on this cognitive mechanism might be in fact more widespread among nonhuman animals than commonly believed.
By responding to information gained through observing or interacting with other individuals, fish can learn about important aspects of their environment, including where to forage, how to recognize and avoid predators, and who to mate with. Social learning processes are often closely intertwined with the social environment; whether individuals engage in social learning, who they learn from, and what they learn frequently depend on complex, nonrandom patterns of social interaction. Social network analysis provides a sophisticated toolset for quantifying such elements of social structure. In this chapter, we discuss how integrating social network approaches with investigations into social learning have provided novel and important insights regarding the ways in which fish acquire and use social information in realistic social contexts.
Innovation – the process that generates novel learned behaviours – is a defining feature of intelligence, and has long attracted the interest of scientists for its implications in brain evolution, emergence of culture, and adaptation to environmental changes. Although most animals have the capacity to innovate, only a few excel in their innovative capacities. A salient feature of these animals is a highly encephalized brain, which provides the cognitive basis for complex behaviors. Highly innovative animals also tend to be ecological generalists, long-lived and sociable, features that are thought to enhance the payoff of innovation. The evolutionary origin of innovative abilities is unclear, however, because innovating implies coping with problems the animal has not experienced before. A possibility is to consider innovation as an emergent property that results from the combination of cognitive and noncognitive traits that have coevolved as part of a life-history syndrome to cope with environmental changes. The coevolution of innovation and social learning capacities is particularly relevant because it has facilitated the accumulation of the knowledge needed for more complex behaviours. The ability to socially transmit knowledge may thus be behind the exceptional variety and sophistication of human innovations.
Behavioral innovation, the ability to invent new behaviors and/or use preexisting behaviors in a new context to respond to a novel situation, can be critical to an individual’s survival (i.e., natural selection). Less studied is how innovation can be critical for mating success (i.e., sexual selection). Bowerbirds are an excellent system to study the latter, given the likely importance of sexual selection to their diversification. Bowerbirds are a family of birds that show remarkable diversity in their unique construction of courtship arenas out of sticks and use of various colored objects as decorations. In this chapter, I give background on what bowerbirds are and present inadvertent evidence from experimental manipulations of their off-body sexual displays that bowerbirds are extremely flexible in their behavior. The bulk of the chapter reviews experiments in which novel problem-solving tasks were presented to bowerbirds and then their performance was compared to their mating success. I conclude by suggesting that an important future research goal should be to study how innovativeness affects the speciation process via sexual selection.
Although fish represent approximately half of vertebrates, the quantitative abilities of fish have been investigated only recently. Two methodological approaches commonly used with mammals and birds have been used: the observation of spontaneous behaviour and training procedures. In the former, fish are observed in their preference for reaching the larger or smaller quantities of biologically relevant stimuli (in most cases, whether they join a larger shoal when placed in an unfamiliar environment). In the latter, fish are trained to select the larger or the smaller of two sets of abstract objects (e.g., two-dimensional figures that differ in numerosity). These studies showed that different fish species process numerical information in a similar way to that of mammals and birds. In this chapter, we review the relevant literature, giving particular regard to the strength and potential weaknesses of the two methodological approaches.
Non-symbolic numerical competences are widespread among preverbal infants and nonhuman animals. Moreover, signature effects that characterize numerical processing are similar between humans and other animals. This suggests a phylogenetically ancient mechanism to support non-symbolic numerical cognition (“number sense”). Here we review studies that used domestic chicks to study the ontogenetic origins of numerical knowledge. This research revealed an association between numbers and space (with smaller numbers associated with the left side of space, and bigger numbers with the right side). This is a crucial feature of non-symbolic numerical cognition, shared between humans and other animals.In the initial part of the chapter, we focus on evidence of chick’s ordinal numerical competence. When tested for their ordinal competence, chicks are predisposed to “count from left to right,” much like most humans. This bias depends on availability of spatial information to solve the ordinal task. When this was prevented, chicks were still able to perform the ordinal tasks, but without any lateralization of performance. Evidence obtained in chicks is discussed also in comparison with primates. This allows addressing whether the degree of visual lateralization and functional segregation between the hemispheres might affect number–space associations in nonhuman animals. In the second part of the chapter, we review evidence from tasks that involve the processing of quantity or number information. Again, domestic chicks showed signs of a number–space association. Even in the absence of any specific numerical training, chicks showed a spontaneous association of bigger numerousness with the right side of space. In a subsequent, strictly controlled experiment, numerical training was used to simultaneously demonstrate a leftward bias for smaller numbers and a rightward bias for bigger numbers. We also obtained evidence that the same number or quantity can be associated with the left or the right space, depending on the reference point to which it is compared. Overall, this tendency to map ordinal information with a left-to-right orientation indicates that number–space associations are not a perquisite of the human species and can occur in the absence of language or formal enculturation.
Welcome to The Cambridge Handbook of Animal Cognition! We hope you will find this a useful reference and a comprehensive overview of a fascinating area of study.
Cooperative interactions are widespread in the animal kingdom. Their occurrence can be explained by mutually non-exclusive benefits increasing an individual's (1) indirect fitness by cooperating with kin, and (2) direct fitness by mutually or reciprocally cooperating with others. Many cooperative behaviors require well-developed neuroendocrine mechanisms regulating their quantity and quality. Fishes offer great opportunities to increase our insight into ultimate and proximate questions of cooperation. Their social systems range from solitary- and pair-living to lose fission–fusion groups and highly complex societies. Cooperative interactions are an essential part of the behavioural repertoire of most fish species, occurring in a variety of social situations like predator inspection, foraging, mating, or brood care. Such interactions take place among related and unrelated individuals and even between members of different species. This fascinating diversity allows investigating all crucial factors mediating cooperation, e.g., by studying behavioural interactions within and between species, by applying comparative approaches between taxonomic groups and by using state-of-the-art genetic and neuroendocrine technologies to resolve the underlying mechanisms. This chapter provides an overview of the mechanisms and functions of cooperative behaviour in fishes, with the overall aim to illuminate the evolution of cooperative behaviour in general.
Semantic communication is about transmitting mental representations of reality. Three research questions address the nature of this process in primates. Can primates produce signals that are meaningful in a lexical sense? Are they capable of compositional semantics? Can they create and infer meaning by integrating context and intention? There is good evidence that, as recipients, primates have capacities at all three levels, whereas for signallers the evidence is less compelling. This difference may have cognitive roots, due to the fact that primate signallers are typically engaged in the here-and-now and, unlike humans, less able to refer to memory content. Future research will have to clarify what mental structures primates can take into account during communication, including entities that are not physically present.