We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Who does not know the most basic fact from the science of genetics, that peas and people reproduce in a similar fashion?
It is taught in high schools. Gregor Mendel discovered the fundamental scientific way that organisms breed, and it works the same way in people as it does in peas. Everyone knows that. They may not remember the specifics, with dominant uppercase A and recessive lowercase a – but they know that humans and peas reproduce basically the same way, because they were taught it, and it’s true.
Now I am certainly not going to try and convince you otherwise. But have you ever actually seen peas reproduce? Thanks to the internet, you can readily see videos of plant breeding. The videos of humans breeding, of course, are posted on more restricted internet sites.
In early human societies, community norms specified where and how living resources should be used within sacred groves and in exploited places. Many rulers of ancient and medieval societies issued decrees reserving game and other wild resources for royalty and limiting peasant uses. Colonial rulers criminalized Indigenous uses of wild species and privatized and commercialized landscapes. Intensive exploitation led to the depletion and extinction of many species and laid the foundation for formal conservation. Concern about deforestation in colonial India led to early forest reserves. The utilitarian disciplines of wildlife management, forestry, range management, and soil science arose in response to threats to living natural resources due to conquest, including intensive exploitation, habitat alteration, and the introduction of non-native species. These disciplines focus on the exploitation of economically valuable species to protect a long-term supply. Early forest reserves in the USA were set aside to regulate the use of forest resources.
Transmutation. “Evolutio,” if you wanted to be fancy and Italian about it. Whatever you want to call it, the grand unrolling of one type into another, connecting all living things into a single tree of life was all the rage among the society gentlemen. James Burnett, Lord Monboddo, an influential Scottish judge in the 1700s, had said shocking things about it. Monboddo’s metaphysics separated humans from brutes by only the thinnest slice of cognition. And imagine how he scandalized the chattering classes when, according to rumor anyway, he suggested perhaps tails even lingered, dangling from the spinal cords of the underdeveloped. They called him an “eccentric,” a fusty, argumentative judge and a voracious reader. Perhaps too learned – genius and madness, you know.
Ever since living beings arose from non-living organic compounds on a primordial planet, more than 3.5 billion years ago, a multitude of organisms has unceasingly flourished by means of the reproduction of pre-existing organisms. Through reproduction, living beings generate other material systems that to some extent are of the same kind as themselves. The succession of generations through reproduction is an essential element of the continuity of life. Not surprisingly, the ability to reproduce is acknowledged as one of the most important properties to characterize living systems. But let’s step back and put reproduction in a wider context, the endurance of material systems.
The view of living systems as machines is based on the idea of a fixed sequence of cause and effect: from genotype to phenotype, from genes to proteins and to life functions. This idea became the Central Dogma: the genotype maps to the phenotype in a one-way causative fashion, making us prisoners of our genes.
“Just the facts, ma’am. Just the facts!” This famous directive by Sergeant Joe Friday – apparently never actually made in this form – is from the television series Dragnet. Unfortunately, while this may be adequate for detecting and solving crime, not so elsewhere. The idea that science is simply a matter of recording empirical experience is hopelessly inadequate and misleading. Science is about empirical experience, but it is about such experience as encountered and interpreted – and with effort and good fortune – as explained by us.
There are several ‘enigmatic canid’ species in North America. One of them is the red wolf (Canis rufus, Figure 1.1), and another is the Great Lakes Wolf. Red wolves are seriously endangered, with a re-released population in North Carolina and breeding programmes being the last populations. Red wolves weren’t even studied closely until the 1960s, after having been hunted nearly to extinction in the nineteenth and twentieth centuries.
This chapter serves as an introduction to the book. It discusses the origin of Planet Earth and its Moon, their dependence on the Sun for energy, and the evolution of life on Earth. The evolution of the first living cell seems to have been a single event and all life on Earth is directly derived from this individual primary organism. The first life forms were anaerobic bacteria, but these later gave rise to photosynthesising cyanobacteria, which produced oxygen. The presence of oxygen eventually led to the emergence of aerobic animals and plants. The chapter then details the emergence of the oceans and supercontinents Pangea and Gondwanaland, the eventual break-up of the supercontinents and the development of the varied ecosystems which characterise Planet Earth at the present time.
In this book we explore how different kinds of parasites affected the key civilizations that flourished across the world over the last 10,000 years. Ancient parasites can be recovered from mummies, skeletons, latrines, coprolites, and chamber pots. Analysis may involve microscopy, ELISA, proteomics, and recovery of DNA. A huge range of parasites can infect humans, ranging from helminths (worms), single-celled protozoa such as malaria and dysentery, and ectoparasites such as lice and fleas. Different parasites will have varying impact upon health depending upon the proportion of a society affected and the physiological consequences of infection upon the body. Here the concept of Disabilit-Adjusted Life Years (DALYs) is employed to estimate the health impact of parasites in past societies, and compare them. This should allow us for the first time to propose which past civilizations may have experienced the greatest health burden from the parasites affecting their populations.
On November 24, 1859, the English naturalist Charles Robert Darwin published On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life . In that book (Darwin 1859), he argued that all organisms, living and dead, were produced by a long, slow, natural process, from a very few original organisms. He called the process “natural selection,” later giving it the alternative name of “the survival of the fittest.” This first chapter is devoted to presenting (without critical comment) the argument of the Origin, very much with an eye to the place and role of natural selection. As a preliminary, it should be noted that the Origin, for all it is one of the landmark works in the history of science, was written in a remarkably “user-friendly” manner. It is not technical, the arguments are straightforward, the illustrative examples are relevant and easy to grasp, the mathematics is at a minimum, meaning non-existent. Do not be deceived. The Origin is also a very carefully structured piece of work (Ruse 1979a). Darwin knew exactly what he was doing when he set pen to paper.
For many millennia, humans have gazed up in wonder at the night-time sky. The full panoply of the Milky Way is an awesome sight. The scale of space is immense. Is there life out there somewhere? If so, where, and what form does it take? In the space of a couple of sentences, we’ve already gone from generalized wonder to specific questions. The next step is from questions to hypotheses, or, in other words, proposed answers. Here are two such hypotheses that I’ll flesh out as the book progresses: first, life exists on trillions of planets in the universe; second, it usually follows evolutionary pathways that are broadly similar to – though different in detail from – those taken on Earth.
Forensic DNA typing was developed to improve our ability to conclusively identify an individual and distinguish that person from all others. Current DNA profiling techniques yield incredibly rare types, but definitive identification of one and only one individual using a DNA profile remains impossible. This fact may surprise you, as there is a popular misconception that a DNA profile is unique to an individual, with the exception of identical twins. You may be the only person in the world with your DNA profile, but we cannot know this short of typing everyone. What we can do is calculate probabilities. The result of a DNA profile translates into the probability that a person selected at random will have that same profile. In most cases, this probability is astonishingly tiny. Unfortunately, this probability is easily misinterpreted, a situation we will see and discuss many times in the coming chapters.
This Systematics Association Special Volume is the result of a symposium entitled, ‘Cryptic taxa - artefact of classification or evolutionary phenomena?’ held on June 17 as part of the Association’s 10th Biennial Meeting 2019. I began to realise that the notion of cryptic species touches the heart of several major debates in biology, including, ‘what are species?’, ‘how should we recognize them?’, the notion of punctuated equilibria and that of morphological stasis in the fossil record. Also, in the midst of a biodiversity crisis the phenomenon of cryptic species suggests that there may be a greater diversity of evolutionary lineages in need of conservation than has been suggested. The chapters that emerged from the Symposium show clearly how the topic of 'species' remains central to biodiversity sciences and the subject of wide-ranging and lively debate. In almost every chapter there is a call for change, either of direction or for the inclusion of new developments and data, and their focus ranges from abandoning species altogether to highlighting the weaknesses in current taxonomic process suggesting that our representation of the biological universe is still a chaotic torso.
Between 1967 and 1970, NASA funded four annual conferences, organized through the New York Academy of Sciences, on the Origins of Life. Their format was conversational, reflecting the eminence of the central attendees, including Frank Fremont-Smith, Norman Horowitz, William McElroy, Philip Abelson, Sidney W. Fox, Leslie Orgel, and Stanley Miller.1 A number of those present were already professional mentors or colleagues of Lynn Margulis, or would soon become so – Cyril Ponnamperuma, Elso Barghoorn, J. William Schopf, Joan Oró, and Philip Morrison. Margulis participated in all four meetings and was tasked to edit their transcripts into volumes (published between 1970 and 1973). The co-chair of these gatherings, Norman Horowitz, also happened to be Lovelock’s colleague as the director of the biology section at NASA’s Jet Propulsion Laboratory (JPL). This relationship likely had some role in Lovelock’s invitation to the second Origins of Life meeting in May 1968. His attendance brought about his first encounter with Margulis: “Margulis, as the youngest member present, had the job of rapporteur. … Perhaps the task of reporting everything we said was onerous and she had no time or opportunity to think about it. Certainly, I had no contact or discussion with her at the meeting. My fruitful collaboration with Lynn was not to begin until some time later” (Lovelock 2000: 254).
The notion that our planet and its inhabitants have not remained exactly as the Creator was supposed to have made them was in the air long before 1859, when the English natural historian Charles Darwin collected and published his evolutionary ideas in his great work On the Origin of Species by Means of Natural Selection. By that time geologists had long known that the 6,000 years allowed by the Bible since the Creation was vastly inadequate for the sculpting of the current landscape by any natural mechanism; and the biologists who were just beginning to study the history of life via the fossil record were not far behind them. Around the turn of the nineteenth century, the French zoologist Jean-Baptiste Lamarck began to argue that fossil molluscan lineages from the Paris Basin had undergone structural change over time, and that the species concerned were consequently not fixed. Importantly, he implicated adaptation to the environment as the cause of change, although the means he suggested – subsequently infamous as “the inheritance of acquired characteristics” – brought later opprobrium.
Like every one of the many millions of other organisms with which we share our planet, the species Homo sapiens is the product of a long evolutionary history. The first very simple cellular organisms spontaneously arose on Earth close to four billion years ago, and their descendants have since diversified to give us forms as different as streptococci, roses, sponges, anteaters, and ourselves.
While it isn’t necessary to do so, it’s often good to start a book by saying something that is clearly true. So, let’s do that. Science has had (and continues to have) a significant impact upon our lives. This fact is undeniable. Science has revealed to us how different species arise, the causes of our world’s changing climate, many of the microphysical particles that constitute all matter, among many other things. Science has made possible technology that has put computing power that was almost unimaginable a few decades ago literally in the palms of our hands. A common smartphone today has more computing power than the computers that NASA used to put astronauts on the Moon in 1969! There are, of course, many additional ways in which science has solved various problems and penetrated previously mysterious phenomena. A natural question to ask at this point is: why discuss this? While we all (or at least the vast majority of us!) appreciate science and what it has accomplished for modern society, there remain – especially among portions of the general public – confusions about science, how it works and what it aims to achieve. The primary goal of this book is to help address some specific confusions about one key aspect of science: how it explains the world.
Once upon a time it was fair to say that most people knew little of science. After all, scientists spent years learning their job so it’s clearly tough-going and, by and large, the rest of the world could get by knowing nothing of superconductivity or the origins of the universe. But increasingly our daily lives have come to be dominated by science, and part of that revolution has been the ever-expanding reach of television and the Internet as sources of information. It’s as though, unwittingly, we’ve all signed up to the Open University. And, it should be said, when it comes to science this has all been helped by a growing awareness among those in the trade that they have an obligation to let the world know how they while away their days.
Metaphor has traditionally been considered antithetical to science. Metaphorical speech, which is commonly associated with the creative wordplay of poetry and fiction, would seem after all to be at cross-purpose to scientists’ efforts to articulate clear, rigorously precise, and objective statements of fact about reality. Aside from a tendency toward obscurity, the greater problem is that metaphorical expressions are typically false, literally speaking. Shakespeare’s Juliet is not literally the sun, time does not literally flow, and the genome is not a literal blueprint, book, or program. It is principally for this reason that scientists and philosophers of science have been, until rather recently, very critical of the suggestion that metaphor might play a legitimate role in the scientific process. In the early modern period, philosophers like Francis Bacon, Thomas Hobbes, and John Locke, who were enthusiastic advocates of the new scientific approach to understanding the world so brilliantly illustrated by the likes of Hooke, Boyle, and Newton, made withering criticism of metaphor as productive of nothing but falsehood and misdirection.
Our highly seasonal world imposes environmental challenges for insects. To survive these inimical periods they rely on a diapause (dormancy) mechanism to bridge unfavorable seasons. The origin of the term “diapause” is discussed, as well as its relationship to related forms of dormancy in other animals. Diapause is distinct from quiescence in that it is not an immediate response to an adverse environment but is programmed at an earlier developmental stage, an attribute that enables the insect to take steps in preparation for entering the arrested state. Diapause can occur at any point in the life cycle (embryo, larva, pupa, adult), but when it occurs it is species-specific. The chapter summarizes who does it and in what stage, as well as addressing the occurrence of diapause in social insects. The pervasive impact of diapause on the insect life cycle begins prior to diapause and continues well beyond its termination.