To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
What is the instantaneous position of a moving object from the point of view of the observer? How does a tennis player know when and where to place their racket in order to return a 120 mph serve? Does time stop sometimes and go faster at others? Space, time and motion have played a fundamental role in extending the foundations of 19th and 20th century physics. Key breakthroughs resulted from scientists who focused not just on measurements based on rulers and clocks, but also on the role of the observer. Research targeted on the observer's capabilities and limitations raises a promising new approach that is likely to forward our understanding of neuroscience and psychophysics. Space and Time in Perception and Action brings together theory and empirical findings from world-class experts and is written for advanced students and neuroscientists with a particular interest in the psychophysics of space, time and motion.
Pain is a subject of significant scientific and clinical interest. This has resulted both from realistic rodent models, and the publication of imaging, psychological and pharmacological studies in humans. Investigators studying rodents refer to anatomical and physiological studies in non-human primates to make their results relevant to humans. Psychophysical and pharmacological studies in humans are interpreted in terms of anatomical and physiological studies in animals; primarily evidence from rodents and cats. There are significant differences in pain mechanisms between these species and primates. Over 20 years of imaging studies have demonstrated the activation of human cortical and subcortical structures in response to painful stimuli. Interpretation of these results relies upon an understanding of the anatomy and physiology of these structures in primates. Jones, Lenz, Casey and Willis review the anatomy and physiology of nociception in monkeys and humans, and provide a firm basis for interpreting studies in humans.
The authoritative reference on NEURON, the simulation environment for modeling biological neurons and neural networks that enjoys wide use in the experimental and computational neuroscience communities. This book shows how to use NEURON to construct and apply empirically based models. Written primarily for neuroscience investigators, teachers, and students, it assumes no previous knowledge of computer programming or numerical methods. Readers with a background in the physical sciences or mathematics, who have some knowledge about brain cells and circuits and are interested in computational modeling, will also find it helpful. The NEURON Book covers material that ranges from the inner workings of this program, to practical considerations involved in specifying the anatomical and biophysical properties that are to be represented in models. It uses a problem-solving approach, with many working examples that readers can try for themselves.
Latent inhibition is a phenomenon by which exposure to an irrelevant stimulus impedes the acquisition or expression of conditioned associations with that stimulus. Latent inhibition, an integral part of the learning process, is observed in many species. This comprehensive collection of studies of latent inhibition, from a variety of disciplines including behavioural/cognitive psychology, neuroscience and genetics, focuses on abnormal latent inhibition effects in schizophrenic patients and schizotypal normals. Amongst other things, the book addresses questions such as, is latent inhibition an acquisition or performance deficit? What is the relationship of latent inhibition to habituation, extinction, and learned irrelevance? Does reduced latent inhibition predict creativity? What are the neural substrates, pharmacology, and genetics of latent inhibition? What do latent inhibition research and theories tell us about schizophrenia? This book provides a single point of reference for neuroscience researchers, graduate students, and professionals, such as psychologists and psychiatrists.
For at least 30 years, there have been close parallels between studies of birdsong development and those of the development of human language. Both song and language require species-specific stimulation at a sensitive period in development and subsequent practice through subsong and plastic song in birds and babbling in infant humans leading to the development of characteristic vocalisations for each species. This book illustrates how social interactions during development can shape vocal learning and extend the sensitive period beyond infancy and how social companions can induce flexibility even into adulthood. Social companions in a wide range of species including birds and humans but also cetaceans and nonhuman primates play important roles in shaping vocal production as well as the comprehension and appropriate usage of vocal communication. This book will be required reading for students and researchers interested in animal and human communication and its development.
This book is concerned with the involvement of the cerebellum in learning and remembering the ability to carry out motor tasks such as walking, riding a bicycle, and speaking. Processes of plasticity have been identified at the cellular level in the cerebellum that could underlie the learning of motor tasks but whether they actually have such a role is controversial. This book is unique in bringing together studies of plasticity at the cellular level with studies of plasticity or learning at the behavioral level and in attempting to build bridges between these two levels of discourse. The book will appeal to neuroscientists and physiologists interested in the neural control of movement.
Genius: The Natural History of Creativity presents a novel theory of genius and creativity, based on the personality characteristics of creative persons and geniuses. Starting with the fact that genius and creativity are related to psychopathology, it uses modern research into the causes of cognitive over-inclusiveness to suggest possible applications of these theories to creativity. Professor Eysenck reports experimental research to support these theories in their application to creativity, as well as considering the role of intelligence, social status, gender and many other factors that have been linked with genius and creativity. The theory traces creativity from DNA through personality to special cognitive processes to genius.
This volume provides a particularly timely survey of invertebrate peptide hormones. Interest has been growing in invertebrate peptide hormones. This interest has focused upon two important and related aspects, both of which are fully covered in this volume. First, many of these peptides are neurohormones with chemical characteristics resembling, sometimes closely, established vertebrate neurohormonal peptides. In this way these findings have had considerable impact on our standing of the origin and evolution of peptide regulators. Second, with the availability of techniques such as HPLC and cDNA probes, which have allowed detailed study of vertebrate peptides, significant advances have been made in our understanding of the physiology and biochemistry of native invertebrate peptides. The volume aims to provide a synthesis between these two aspects of investigative activity. As such, it should have a broad appeal to scientists from a number of disciplines.
Grooming is among the most evolutionary ancient and highly represented behaviours in many animal species. It represents a significant proportion of an animal's total activity and between 30-50% of their waking hours. Recent research has demonstrated that grooming is regulated by specific brain circuits and is sensitive to stress, as well as to pharmacologic compounds and genetic manipulation, making it ideal for modelling affective disorders that arise as a function of stressful environments, such as stress and post-traumatic stress disorder. Over a series of 12 chapters that introduce and explicate the field of grooming research and its significance for the human and animal brain, this book covers the breadth of grooming animal models while simultaneously providing sufficient depth in introducing the concepts and translational approaches to grooming research. Written primarily for graduates and researchers within the neuroscientific community.
Extensive literature documented that astrocytes release neurotransmitters, cytokines and other signaling molecules to modulate migration, maturation and myelin synthesis of oligodendrocytes through mechanisms primarily converging on cytosolic [Ca2+] transients. Considering the long-term effects, it is expected that astrocyte-conditioned medium is a major regulator of gene expression in oligodendrocytes even in the absence of cytosol-to-cytosol communication via astrocyte–oligodendrocyte gap junction channels. Indeed, by comparing the transcriptomes of immortalized precursor oligodendrocyte (Oli-neu) cells when cultured alone and co-cultured with non-touching astrocytes we found profound changes in the gene expression level, control and networking. Remarkably, the astrocyte proximity was more effective in remodeling the myelination (MYE) gene fabric and its control by cytokine receptor (CYR)-modulated intercellular Ca2+-signaling (ICS) transcriptomic network than the dibutyryl-cAMP (db-cAMP) treatment-induced transformation into myelin-associated glycoprotein-positive oligodendrocyte-like cells. Moreover, astrocyte proximity up-regulated 37 MYE genes and switched on another 14 MYE, 23 ICS and 4 CYR genes, enhancing the roles of the leukemia inhibitory factor receptor and connexins Cx29 and Cx47. The novel prominent gene analysis identified the enhancer of zeste homolog 2 as the most relevant MYE gene in the astrocyte proximity, notch gene homolog 1 in control and B-cell leukemia/lymphoma 2 in differentiated Oli-neu cells.
Astrocytes constitute a major group of glial cells which were long regarded as passive elements, fulfilling nutritive and structural functions for neurons. Calcium rise in astrocytes propagating to neurons was the first demonstration of direct interaction between the two cell types. Since then, calcium has been widely used, not only as an indicator of astrocytic activity but also as a stimulator switch to control astrocyte physiology. As a result, astrocytes have been elevated from auxiliaries to neurons, to cells involved in processing synaptic information. Curiously, while there is evidence that astrocytes play an important role in synaptic plasticity, the data relating to calcium's pivotal role are inconsistent. In this review, we will detail the various mechanisms of calcium flux in astrocytes, then briefly present the calcium-dependent mechanisms of gliotransmitter release. Finally, we will discuss the role of calcium in plasticity and present alternative explanations that could reconcile the conflicting results published recently.
There is a growing body of evidence suggesting a functional relationship between Ca2+ signals generated in astroglia and the functioning of nearby excitatory synapses. Interference with endogenous Ca2+ homeostasis inside individual astrocytes has been shown to affect synaptic transmission and its use-dependent changes. However, establishing the causal link between source-specific, physiologically relevant intracellular Ca2+ signals, the astrocytic release machinery and the consequent effects on synaptic transmission has proved difficult. Improved methods of Ca2+ monitoring in situ will be essential for resolving the ambiguity in understanding the underlying Ca2+ signalling cascades.
Astrocytes are involved in synaptic and cerebrovascular regulation in the brain. These functions are regulated by intracellular calcium signalling that is thought to reflect a form of astrocyte excitability. In a recent study, we reported modification of the genetically encoded calcium indicator (GECI) GCaMP2 with a membrane-tethering domain, Lck, to generate Lck-GCaMP2. This GECI allowed us to detect novel microdomain calcium signals. The microdomains were random and ‘spotty’ in nature. In order to detect such signals more reliably, in the present study we further modified Lck-GCaMP2 to carry three mutations in the GCaMP2 moiety (M153K, T203V within EGFP and N60D in the CaM domain) to generate Lck-GCaMP3. We directly compared Lck-GCaMP2 and Lck-GCaMP3 by assessing their ability to monitor several types of astrocyte calcium signals with a focus on spotty microdomains. Our data show that Lck-GCaMP3 is between two- and four-times better than Lck-GCaMP2 in terms of its basal fluorescence intensity, signal-to-noise and its ability to detect microdomains. The use of Lck-GCaMP3 thus represents a significantly improved way to monitor astrocyte calcium signals, including microdomains, and will facilitate detailed exploration of their molecular mechanisms and physiological roles.
It was recently reported that in one of the adult neurogenetic zones, the subventricular zone (SVZ), astrocyte-like cells release glutamate upon intracellular Ca2+ increases. However, the signals that control Ca2+ activity and glutamate release from SVZ astrocytes are not known. Here, we examined whether prostaglandin E2 (PGE2), which induces glutamate release from mature astrocytes, is such a signal. Using the gramicidin-perforated patch-clamp technique, we show that the activity of N-Methyl-D-Aspartate receptor (NMDAR) channel in neuroblasts is a high fidelity sensor of ambient glutamate levels. Using such sensors, we found that application of PGE2 led to increased ambient glutamate levels in the SVZ. In parallel experiments, PGE2 induced an increase in intracellular Ca2+ levels in SVZ cells, in particular astrocyte-like cells, as shown using Ca2+ imaging. Finally, a PGE2 enzyme immunoassay showed that the choroid plexus of the lateral ventricle and to a lesser extent the SVZ (ten-fold less) released PGE2. These findings suggest that PGE2 is a physiological signal for inducing glutamate release from SVZ astrocytes that is important for controlling neuroblast survival and proliferation. This signal may be accentuated following ischemia or injury-induced PGE2 release and may contribute to the injury-associated increased neurogenesis.
Cell bodies of trigeminal nerves, which are located in the trigeminal ganglion, are completely surrounded by satellite glial cells and together form a functional unit that regulates neuronal excitability. The goals of this study were to investigate the cellular organization of the rat trigeminal ganglia during postnatal development and correlate those findings with expression of proteins implicated in neuron–glia interactions. During postnatal development there was an increase in the volume of the neuronal cell body, which correlated with a steady increase in the number of glial cells associated with an individual neuron from an average of 2.16 at birth to 7.35 on day 56 in young adults. Interestingly, while the levels of the inwardly rectifying K+ channel Kir4.1 were barely detectable during the first week, its expression in satellite glial cells increased by day 9 and correlated with initial formation of functional units. Similarly, expression of the vesicle docking protein SNAP-25 and neuropeptide calcitonin gene-related peptide was readily detected beginning on day 9 and remained elevated throughout postnatal development. Based on our findings, we propose that the expression of proteins involved in facilitating neuron–glia interactions temporally correlates with the formation of mature functional units during postnatal development of trigeminal ganglion.
There is no question about the fact that astrocytes and other glial cells release neurotransmitters that activate receptors on neurons, glia and vascular cells, and that calcium is an important second messenger regulating the release. This occurs in cell culture, tissue slice and in vivo. Negative results from informative experiments designed to test the mechanism of calcium-dependent neurotransmitter release from astrocytes and the ensuing effects on synaptic transmission, have been cited as evidence calling into question whether astrocytes release neurotransmitters under normal circumstances with effects on synaptic transmission. The special feature section in this issue of Neuron Glia Biology addresses these issues and other aspects of neurotransmitter release from astrocytes in communicating with neurons and glial cells. Together these studies suggest that application of vocabulary and concepts developed for synaptic communication between neurons can lead to confusion and apparent paradoxes with respect to communication by extracellular signaling molecules released from glia in response to functional activity.
In the cerebellum, lamellar Bergmann glial (BG) appendages wrap tightly around almost every Purkinje cell dendritic spine. The function of this glial ensheathment of spines is not entirely understood. The development of ensheathment begins near the onset of synaptogenesis, when motility of both BG processes and dendritic spines are high. By the end of the synaptogenic period, ensheathment is complete and motility of the BG processes decreases, correlating with the decreased motility of dendritic spines. We therefore have hypothesized that ensheathment is intimately involved in capping synaptogenesis, possibly by stabilizing synapses. To test this hypothesis, we misexpressed GluR2 in an adenoviral vector in BG towards the end of the synaptogenic period, rendering the BG α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) Ca2+-impermeable and causing glial sheath retraction. We then measured the resulting spine motility, spine density and synapse number. Although we found that decreasing ensheathment at this time does not alter spine motility, we did find a significant increase in both synaptic pucta and dendritic spine density. These results indicate that consistent spine coverage by BG in the cerebellum is not necessary for stabilization of spine dynamics, but is very important in the regulation of synapse number.