To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The burgeoning field of differential equations on graphs has experienced significant growth in the past decade, propelled by the use of variational methods in imaging and by its applications in machine learning. This text provides a detailed overview of the subject, serving as a reference for researchers and as an introduction for graduate students wishing to get up to speed. The authors look through the lens of variational calculus and differential equations, with a particular focus on graph-Laplacian-based models and the graph Ginzburg-Landau functional. They explore the diverse applications, numerical challenges, and theoretical foundations of these models. A meticulously curated bibliography comprising approximately 800 references helps to contextualise this work within the broader academic landscape. While primarily a review, this text also incorporates some original research, extending or refining existing results and methods.
Cubature rules are indispensable tools in scientific computing and applied sciences whenever evaluating or discretizing integrals is needed. This monograph is the first comprehensive resource devoted to cubature rules in English since Stroud's classic 1971 book, and the first book about minimal cubature rules. The book explores the subject's theoretical side, which intersects with many branches of mathematics. Minimal cubature rules are intimately connected with common zeros of orthogonal polynomials, which can be described via the polynomial ideals and varieties. Many prominent or practical cubature rules are invariant under a finite group, and some involve symmetric functions and the discrete Fourier transform. Based on state-of-the-art research, the book systematically studies Gauss and minimal cubature rules, and includes a chapter on the practical aspects of construction cubature rules on triangles and simplexes. This comprehensive guide is ideal for researchers and advanced graduate students across the computational and applied mathematics community.
Written by leaders in the field, this text showcases some of the remarkable properties of the finite Toda lattice and applies this theory to establish universality for the associated Toda eigenvalue algorithm for random Hermitian matrices. The authors expand on a 2019 course at the Courant Institute to provide a comprehensive introduction to the area, including previously unpublished results. They begin with a brief overview of Hamiltonian mechanics and symplectic manifolds, then derive the action-angle variables for the Toda lattice on symmetric matrices. This text is one of the first to feature a new perspective on the Toda lattice that does not use the Hamiltonian structure to analyze its dynamics. Finally, portions of the above theory are combined with random matrix theory to establish universality for the runtime of the associated Toda algorithm for eigenvalue computation.
Bridge the gap between theoretical concepts and their practical applications with this rigorous introduction to the mathematics underpinning data science. It covers essential topics in linear algebra, calculus and optimization, and probability and statistics, demonstrating their relevance in the context of data analysis. Key application topics include clustering, regression, classification, dimensionality reduction, network analysis, and neural networks. What sets this text apart is its focus on hands-on learning. Each chapter combines mathematical insights with practical examples, using Python to implement algorithms and solve problems. Self-assessment quizzes, warm-up exercises and theoretical problems foster both mathematical understanding and computational skills. Designed for advanced undergraduate students and beginning graduate students, this textbook serves as both an invitation to data science for mathematics majors and as a deeper excursion into mathematics for data science students.
Unlock the potential of computational fluid dynamics with this essential guide for master's and graduate students, and researchers. It explores the immersed boundary method (IBM), a revolutionary approach for simulating flows in complex geometries. With a focus on fluid/structure interaction, it examines theoretical principles and practical implementations, offering insights into tackling intricate geometries and enhancing simulation accuracy. The book features a series of numerical examples that increase in complexity, and is accompanied by the source code, allowing readers to replicate results and deepen their understanding. Whether you're wanting to refine your skills or embark on new research, this introduction will empower you to master the art of complex flow simulations.