To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the previous chapter we mentioned that fluid viscosity might alter the critical Weber number that divides the parameter space into regimes of absolute and convective instability. The effects of gas and liquid viscosities are investigated separately in this chapter, not just to understand each individual effect but also to demonstrate the coupled effect, which is unexpected. In Chapter 3, stability analysis for an inviscid liquid sheet of uniform thickness was applied locally to investigate the stability of gradually thinning liquid sheets. The thinning was either due to axial expansion or gravitational acceleration. The local application of the inviscid theory for a uniform sheet to the two different cases of nonuniform sheets was made judiciously. Likewise the viscous theories given in this chapter can be applied judiciously to a gradually thinning viscous sheet whatever the cause of the thinning. The thinning may be caused by kinematic requirements, gravitational acceleration, or viscous extrusion. The breakup of a viscous liquid sheet in an inviscid gas is expounded in Section 4.1. The effect of gas viscosity is elucidated in Section 4.2. The effects of liquid and gas viscosities on the onset of sheet breakup are summarized in Section 4.3.
A Viscous Sheet in an Inviscid Gas
The basic flow attributed to G. I. Taylor is given in Section 4.1a, and its stability is analyzed in Section 4.1b. The physical mechanism of the sheet breakup is discussed in Section 4.1c, based on energy considerations.
The study of the theory of elastic wave propagation and generation can be a daunting task because of its inherent mathematical complexity. The books on the subject currently available are either advanced or introductory. The advanced ones require a mathematical background and/or maturity generally beyond that of the average seismology student. The introductory ones, on the other hand, address advanced subjects but usually skip the more difficult mathematical derivations, with frequent references to the advanced books. What is needed is a text that goes through the complete derivations, so that readers have the opportunity to acquire the tools and training that will allow them to pose and solve problems at an intermediate level of difficulty and to approach the more advanced problems discussed in the literature. Of course, there is nothing new in this idea; there are hundreds of physics, mathematics, and engineering books that do just that, but unfortunately this does not apply to seismology. Consequently, the student in a seismology program without a strong quantitative or theoretical component, or the observational seismologist interested in a clear understanding of the analysis or processing techniques used, do not have an accessible treatment of the theory. A result of this situation is an ever widening gap between those who understand seismological theory and those who do not. At a time when more and more analysis and processing computer packages are available, it is important that their users have the knowledge required to use those packages as something more than black boxes.
Most earthquakes can be represented by slip on a fault, which for simplicity will be modeled as a planar feature. When an earthquake occurs, the two sides of the fault suffer a sudden relative displacement with respect to each other, which in turn is the source of seismic waves. Assuming that the Earth is initially at rest and that there are no external forces, the occurrence of an earthquake is the result of a localized and temporary breakdown of the stress–strain relationship, which is the only basic equation of elasticity that is not a fundamental law of physics (Backus and Mulcahy, 1976). Let us compare this situation with that encountered in Chapter 9. There we used (9.4.2) to study the displacement field caused by a given body force, while here the displacement at points away from the fault is caused by a discontinuity in displacement across the fault, and because of the breakdown of Hooke's law, we cannot use (9.4.2) directly. Therefore, we are faced with the following problem: what is the equivalent body force that in the absence of the fault will cause exactly the same displacement field as slip on the fault. Getting an answer to this question took a considerable amount of time and effort (for a review, see Stauder, 1962). As a result of work done during the 1920–50s, two possible models were introduced, based on single and double couples similar to those discussed in Chapter 9.
The development of the theory of elasticity took about two centuries, beginning with Galileo in the 1600s (e.g., Love, 1927; Timoshenko, 1953). The most difficult problem was to gain an understanding of the forces involved in an elastic body. This problem was addressed by assuming the existence of attractive and repulsive forces between the molecules of a body. The most successful of the theories based on this assumption was that of Navier, who in 1821 presented the equations of motion for an elastic isotropic solid (Hudson, 1980; Timoshenko, 1953). Navier's results were essentially correct, but because of the molecular assumptions made, only one elastic constant was required, as opposed to the two that characterize an isotropic solid (see §4.6). Interestingly, the results based on the simple molecular theory used by the earlier researchers can be obtained by setting the ratio of P-to S-wave velocities equal to √3 in the more general results derived later. Navier's work attracted the attention of the famous mathematician Cauchy, who in 1822 introduced the concept of stress as we know it today. Instead of considering intermolecular forces, Cauchy introduced the idea of pressure on surfaces internal to the body, with the pressure not perpendicular to the surface, as it would be in the case of hydrostatic pressure. This led to the concept of stress, which is much more complicated than that of strain, and which requires additional continuum mechanics concepts for a full study.
After the homogeneous infinite space, the next two simplest configurations are a homogeneous half-space with a free surface and two homogeneous half-spaces (or media, for short) with different elastic properties. The first case can be considered as a special case of the second one with one of the media a vacuum. In either case the boundary between the two media constitutes a surface of discontinuity in elastic properties that has a critical effect on wave propagation. To simplify the problem we will assume plane boundaries and wave fronts. Although in the Earth neither the wave fronts nor the boundaries satisfy these assumptions, they are acceptable approximations as long as the seismic source is sufficiently far from the receiver and/or the wavelength is much shorter than the curvature of the boundary. In addition, the case of spherical wave fronts can be solved in terms of plane wave results (e.g., Aki and Richards, 1980). Therefore, the theory and results described here have a much wider application than could be expected by considering the simplifying assumptions. For example, they are used in teleseismic studies, in the generation of synthetic seismograms using ray theory, and in exploration seismology, particularly in amplitude-versus-offset (AVO) studies.
The interaction of elastic waves with a boundary has a number of similarities with the interaction of acoustic and electromagnetic waves, so that it can be expected that a wave incident on a boundary will generate reflected and transmitted waves (the latter only if the other medium is not a vacuum).
In the previous chapters we studied the propagation of plane waves without consideration of the source of the waves. Although this approach is very fruitful, it does not allow investigation of the waves generated by seismic sources, either natural or artificial. Earthquakes are the most important natural sources, and the study of the waves they generate has played a major role in our understanding of the inner structure of the Earth and the nature of the earthquake source, which will be the subject of the next chapter. However, before reaching the point where it can be analyzed it is necessary to start with simpler problems, which will be done in this chapter.
The simplest problem corresponds to a spatially concentrated force (or point source) directed along one of the coordinate axes. Even in this case, however, solving the elastic wave equation is a rather complicated task that requires considerable mathematical background, which is provided below. The starting point is the scalar wave equation with a source term, which is first solved for an impulsive source, in which case the solution is known as Green's function for the problem. Then the Helmholtz decomposition theorem, which we have already encountered in §5.6, is used to reduce the solution of the elastic wave equation to the solution of two simpler ones. After this series of steps, and considerable additional work, the problem of the concentrated force can be solved.
Tensors play a fundamental role in theoretical physics. The reason for this is that physical laws written in tensor form are independent of the coordinate system used (Morse and Feshbach, 1953). Before elaborating on this point, consider a simple example, based on Segel (1977). Newton's second law is f = ma, where f and a are vectors representing the force and acceleration of an object of mass m. This basic law does not have a coordinate system attached to it. To apply the law in a particular situation it will be convenient to select a coordinate system that simplifies the mathematics, but there is no question that any other system will be equally acceptable. Now consider an example from elasticity, discussed in Chapter 3. The stress vector T (force/area) across a surface element in an elastic solid is related to the vector n normal to the same surface via the stress tensor. The derivation of this relation is carried out using a tetrahedron with faces along the three coordinate planes in a Cartesian coordinate system. Therefore, it is reasonable to ask whether the same result would have been obtained if a different Cartesian coordinate system had been used, or if a spherical, or cylindrical, or any other curvilinear system, had been used. Take another example. The elastic wave equation will be derived in a Cartesian coordinate system.
Elasticity theory, which lies at the core of seismology, is most generally studied as a branch of continuum mechanics. Although this general approach is not required in introductory courses, it is adopted here for two reasons. First, it affords a number of insights either not provided, or not as easily derivable, when a more restricted approach is used. Secondly, it is essential to solve advanced seismology problems, as can be seen from the discussion in Box 8.5 of Aki and Richards (1980), and references therein, or from the book by Dahlen and Tromp (1998).
Continuum mechanics studies the deformation and motion of bodies ignoring the discrete nature of matter (molecules, atoms, subatomic particles), and “confines itself to relations among gross phenomena, neglecting the structure of the material on a smaller scale” (Truesdell and Noll, 1965, p. 5). In this phenomenological approach a number of basic concepts (among them, stress, strain, and motion) and principles (see Chapter 3) are used to derive general relations applicable, in principle, to all types of media (e.g., different types of solids and fluids). These relations, however, are not enough to solve specific problems. To do that, additional relations, known as constitutive equations, are needed. These equations, in turn, are used to define ideal materials, such as perfect fluids, viscous fluids, and perfect elastic bodies (Truesdell and Toupin, 1960).