We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In typical linear programming problems, we are concerned with finding non-negative integers {x1,…, xn} that maximize a linear form c1x1 + … + cnxn, subject to a number of linear inequalities, for The maximum is necessarily attained at one of the vertices of the convex hull of integer points defined by the inequalities, so we have an interest in estimating the number M of these vertices. We give two results; one improving an upper bound result for M of Hayes and Larman concerning the Knapsack polytope, the other an example showing that, in 3-dimensions, it is possible to choose the coefficients aij to obtain a lower bound for M.
A. Bezdek and W. Kuperberg constructed a nonlattice packing of congruent ellipsoids in Euclidean 3-space E3 with density 0·7459 …, which exceeds the density σL2 = 0·74048… of the densest lattice packing of spheres and hence of ellipsoids in E3. G. Kuperberg improved this to 0·7533… We improve this slightly to 0·7549…. In our case the quotient of the largest and the smallest halfaxis of the ellipsoids is <42, so the ellipsoids are not too degenerate. If one combines G. Kuperberg's refinement and ours, one obtains a packing density of 0·7585…