We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a version of the Busemann-Petty problem for $\log $-concave measures with an additional assumption on the dilates of convex, symmetric bodies. One of our main tools is an analog of the classical large deviation principle applied to $\log $-concave measures, depending on the norm of a convex body. We hope this will be of independent interest.
Let H be a real Hilbert space and $\Phi :H\to H$ be a $C^1$ operator with Lipschitzian derivative and closed range. We prove that $\Phi ^{-1}(0)\neq \emptyset $ if and only if, for each $\epsilon>0$, there exist a convex set $X\subset H$ and a convex function $\psi :X\to \mathbf {R}$ such that $\sup _{x\in X}(\|x\|^2+\psi (x))-\inf _{x\in X}(\|x\|^2+\psi (x))<\epsilon $ and $0\in \overline {{\mathrm {conv}}}(\Phi (X))$.
We compare two standard approaches to defining lower Ricci curvature bounds for Riemannian metrics of regularity below $C^2$. These are, on the one hand, the synthetic definition via weak displacement convexity of entropy functionals in the framework of optimal transport, and the distributional one based on non-negativity of the Ricci-tensor in the sense of Schwartz. It turns out that distributional bounds imply entropy bounds for metrics of class $C^1$ and that the converse holds for $C^{1,1}$-metrics under an additional convergence condition on regularizations of the metric.
where \[{\text{c}}(k,X)\] stands for the best constant \[C > 0\] such that \[\mathop P\limits^ \vee \leqslant CP\] for every k-homogeneous polynomial \[P \in \mathcal{P}{(^k}X)\]. We show that if X is a finite dimensional complex space then \[{\text{c}}(X) = 1\]. We derive some consequences of this fact regarding the convergence of analytic functions on such spaces.
The result is no longer true in the real setting. Here we relate this constant with the so-called Bochnak’s complexification procedure.
We also study some other properties connected with polarization. Namely, we provide necessary conditions related to the geometry of X for \[c(2,X) = 1\] to hold. Additionally we link polarization constants with certain estimates of the nuclear norm of the product of polynomials.
We prove that the class of reflexive asymptotic-$c_{0}$ Banach spaces is coarsely rigid, meaning that if a Banach space $X$ coarsely embeds into a reflexive asymptotic-$c_{0}$ space $Y$, then $X$ is also reflexive and asymptotic-$c_{0}$. In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-$c_{0}$ space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs.
In this note we prove that the Kalton interlaced graphs do not equi-coarsely embed into the James space ${\mathcal{J}}$ nor into its dual ${\mathcal{J}}^{\ast }$. It is a particular case of a more general result on the non-equi-coarse embeddability of the Kalton graphs into quasi-reflexive spaces with a special asymptotic structure. This allows us to exhibit a coarse invariant for Banach spaces, namely the non-equi-coarse embeddability of this family of graphs, which is very close to but different from the celebrated property ${\mathcal{Q}}$ of Kalton. We conclude with a remark on the coarse geometry of the James tree space ${\mathcal{J}}{\mathcal{T}}$ and of its predual.
Let D(A) be the domain of an m-accretive operator A on a Banach space E. We provide sufficient conditions for the closure of D(A) to be convex and for D(A) to coincide with E itself. Several related results and pertinent examples are also included.
We prove an implicit function theorem for functions on infinite-dimensional Banach manifolds, invariant under the (local) action of a finite-dimensional Lie group. Motivated by some geometric variational problems, we consider group actions that are not necessarily differentiable everywhere, but only on some dense subset. Applications are discussed in the context of harmonic maps, closed (pseudo-) Riemannian geodesics and constant mean curvature hypersurfaces.
We show that spaces of Colombeau generalized functions with smooth parameter dependence are isomorphic to those with continuous parametrization. Based on this result we initiate a systematic study of algebraic properties of the ring of generalized numbers in this unified setting. In particular, we investigate the ring and order structure of and establish some properties of its ideals.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.