We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper analyses the steady-state operation of a generalized bioreactor model that encompasses a continuous-flow bioreactor and an idealized continuous-flow membrane bioreactor as limiting cases. A biodegradation of organic materials is modelled using Contois growth kinetics. The bioreactor performance is analysed by finding the steady-state solutions of the model and determining their stability as a function of the dimensionless residence time. We show that an effective recycle parameter improves the performance of the bioreactor at moderate values of the dimensionless residence time. However, at sufficiently large values of the dimensionless residence time, the performance of the bioreactor is independent of the recycle ratio.
Plane wave solutions to the cubic nonlinear Schrödinger equation on a torus have recently been shown to behave orbitally stable. Under generic perturbations of the initial data that are small in a high-order Sobolev norm, plane waves are stable over long times that extend to arbitrary negative powers of the smallness parameter. The present paper studies the question as to whether numerical discretizations by the split-step Fourier method inherit such a generic long-time stability property. This can indeed be shown under a condition of linear stability and a nonresonance condition. They can both be verified in the case of a spatially constant plane wave if the time step-size is restricted by a Courant–Friedrichs–Lewy condition (CFL condition). The proof first uses a Hamiltonian reduction and transformation and then modulated Fourier expansions in time. It provides detailed insight into the structure of the numerical solution.
It has been known for a long time that the equivariant $2+1$ wave map into the $2$-sphere blows up if the initial data are chosen appropriately. Here, we present numerical evidence for the stability of the blow-up phenomenon under explicit violations of equivariance.
Microbial competition for nutrients is a common phenomenon that occurs between species inhabiting the same environment. Bioreactors are often used for the study of microbial competition since the number and type of microbial species can be controlled, and the system can be isolated from other interactions that may occur between the competing species. A common type of competition is the so-called “pure and simple” competition, where the microbial populations interact in no other way except the competition for a single rate-limiting nutrient that affects their growth rates. The issue of whether pure and simple competition under time-invariant conditions can give rise to chaotic behaviour has been unresolved for decades. The third author recently showed, for the first time, that chaos can theoretically occur in these systems by analysing the dynamics of a model where both competing species grow following the biomass-dependent Contois model while the yield coefficients associated with the two species are substrate-dependent. In this paper we show that chaotic behaviour can occur in a much simpler model of pure and simple competition. We examine the case where only one species grows following the Contois model with variable yield coefficient while the other species is allowed to grow following the simple Monod model with constant yield. We show that while the static behaviour of the proposed model is quite simple, the dynamic behaviour is complex and involves period doubling culminating in chaos. The proposed model could serve as a basis to re-examine the importance of Contois kinetics in predicting complex behaviour in microbial competition.
In this paper we look at the performance of trigonometric integrators applied to highly oscillatory differential equations. It is widely known that some of the trigonometric integrators suffer from low-order resonances for particular step sizes. We show here that, in general, trigonometric integrators also suffer from higher-order resonances which can lead to loss of nonlinear stability. We illustrate this with the Fermi–Pasta–Ulam problem, a highly oscillatory Hamiltonian system. We also show that in some cases trigonometric integrators preserve invariant or adiabatic quantities but at the wrong values. We use statistical properties such as time averages to further evaluate the performance of the trigonometric methods and compare the performance with that of the mid-point rule.