To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ordinary chondrites, the most abundant meteorites, constitute about 80% of meteorite falls and are essential to our understanding of cosmochemistry. They provide important information about planetary accretion, the early Solar System, and the geological history of asteroids, including such processes as thermal metamorphism, shock metamorphism, and aqueous alteration. This comprehensive guide begins with meteorite classifications and useful definitions, followed by a discussion of fall phenomena and terrestrial weathering. It provides a detailed overview of the three main ordinary-chondrite groups, which include the most primitive, least-processed meteorites known. Compositional differences among these samples furnish clues to the nature of processes operating in the solar nebula 4.5 billion years ago. These rocks also disclose information on the nature and origin of chondrules, matrix material, and metallic iron-nickel grains. This book is a valuable resource for graduate students and research professionals interested in meteorites and planetary science, as well as amateur meteorite enthusiasts.
Intended for graduate and advanced undergraduate students, this textbook is a thoroughly modern introduction to and a self-contained treatise on the theoretical and mathematical fundamentals of General Relativity. The chapters are organized into three parts, with the first covering Maxwell's theory of electromagnetism, the relativistic Kepler problem, and the systematics of the underlying geometry, with the more abstract notion of the fibre bundle relegated to the Appendix. The second part begins with a derivation of the Einstein equations and leads to topics such as cosmology, black holes, causal structures, and action principles. The third part covers the canonical formulation of field theory in general and General Relativity in particular, leading to the concept of the total energy in General Relativity and quantum phenomena with event horizons. The book minimizes historical references, focuses on modern tools, examples, and applications, and emphasizes the commonalities between relativistic gravity and gauge theory.
'Quantum Cosmology' offers a guided introduction to the quantum aspects of the cosmos. Starting with an overview of early universe cosmology, the book builds up to advanced topics such as the Wheeler–DeWitt equation, gravitational path integrals, and the no-boundary proposal for the wave function of the universe. Readers will explore tunneling processes via Coleman–DeLuccia instantons, the quantum origin of primordial fluctuations, the thermodynamics of horizons, and basic notions of string cosmology. Concepts such as wormholes and semi-classical geometry are introduced with clarity and physical motivation. The book assumes some familiarity with general relativity and quantum mechanics, but little prior knowledge of cosmology. It includes a wide range of exercises, with solutions provided. Written in a pedagogical style, it bridges the gap between undergraduate courses and the research level in this frontier area of theoretical physics.
'Quasar Absorption Lines' is a comprehensive, detailed exposition on the science and analysis of quasar spectra in two volumes, for both aspiring and seasoned astronomers. This Volume 2: 'Astrophysics, Analysis, and Modeling' describes atomic transitions of hydrogenic and multi-electron ions, the theoretical foundation and practical application of the ΛCDM cosmological model, and radiative transfer from cosmological sources. The theory of spectrographs and the mathematical formalism and quantitative analysis of spectral absorption lines and ionization breaks are treated in detail, including column density measurements, line deblending, and Voigt profile fitting. The philosophies, methods, and techniques of large absorption line surveys are presented, including methods for correcting incompleteness and for measuring accurate absorber population statistics. Gas physics, heating/cooling, and ionization are also covered, followed by detailed methods for undertaking multi-component, multiphase chemical-ionization modeling.
'Quasar Absorption Lines' is a comprehensive, detailed exposition on the science and analysis of quasar spectra in two volumes, for both aspiring and seasoned astronomers. This Volume 1: 'Introduction, Discoveries, and Methods' covers the evolution of the field of quasar spectroscopy over the six decades since quasars were discovered, including the development and application of observational methods and the knowledge gained from them. The broad treatment includes studies of the Ly α forest, Lyman limit systems, damped Ly α absorbers, deuterium (D/H), 21-cm absorbers, HI and HeII reionization, the warm/hot intergalactic medium, and the multiple ionization phases of metal lines. The connections between these absorbers and galaxies (the circumgalactic medium), galaxy groups (the intragroup medium), and clusters of galaxies (the intracluster medium) are treated in depth. Also covered are the taxonomy and classifications of AGN/quasar spectra, black hole accretion, broad and narrow associated absorption lines, and the quasar circumgalactic medium.
Presenting a concise overview of astrophysical concepts, the second edition of this textbook bridges the gap between introductory astronomy books and advanced astrophysics texts. Designed for one-semester astrophysics courses, the textbook is aimed at science and engineering students with college-level calculus-based physics. The new edition features both revisions and additions, with the extension of topics such as luminosity distance and the inclusion of notable developments such as the James Webb and Roman Space Telescopes. As before, the chapters are organized into five parts, covering: stellar properties; stellar structure and evolution; the interstellar medium and star/planet formation; our Milky Way and other galaxies; and cosmology. The exposition guides students toward a comprehensive fundamental understanding, using 'Quick Questions' to spur practice in basic computations, and multi-part exercises that offer a greater challenge. The solutions to the questions are freely accessible online, with exercise solutions and lecture slides available for instructors.
Our exploration of Mars has revealed a world as fascinating as Earth, with a changing climate, giant volcanoes, former oceans, polar ice caps, and numerous impact craters. This book provides a comprehensive summary of the morphology and distribution of meteorite craters on Mars, and the wealth of information these can provide on the crustal structure, surface geology, climate and evolution of the planet. The chapters present highly illustrated case studies of landforms associated with impact craters to highlight their morphological diversity, using high-resolution images and topographic data to compare these features with those on other bodies in the Solar System. Including research questions to inspire future work, this book will be valuable for researchers and graduate students interested in impact craters (both terrestrial and extra-terrestrial) and Mars geology, as well as planetary geologists, planetary climatologists and astrobiologists.
Thirty years on from the discovery of the first exoplanets, our focus is now turning to the search for signs of possible life on these worlds through the detection of atmospheric biosignatures. In parallel, the search for extraterrestrial intelligence and technosignatures is being revolutionised as the new era of time-domain survey astronomy gets underway. Together with new planetary science missions within the Solar System, the search for life beyond Earth is entering a new data-rich era. But, when the discoveries come, what will they mean and how should they be communicated to the scientific community and wider society in the era of social media and fake news? This volume distils the latest multi-disciplinary perspectives, encompassing the nature of life in a cosmic context, astronomical search methods and interpretative frameworks, as well as insights into the cultural and societal impacts of such a high-profile discovery.
This third volume of the award-winning The International Atlas of Mars Exploration picks up the story where Volume 2 left off, after the first Martian year of Curiosity's mission in 2014. Covering the exploration of Mars from 2015 to 2021 and supported by a unique set of detailed annotated maps and graphics, this volume documents the activities of Opportunity, Curiosity, InSight, China's rover Zhurong, and the early activities of Mars 2020. This essential visual reference chronicles the day-to-day operations of each mission, recording future landing site planning, how landing sites were chosen and what happened during each mission. Like the previous volumes, the atlas is accessible to space enthusiasts, but the bibliography and meticulous detail make it a particularly valuable resource for academic researchers and students working in planetary science and planetary mapping.
This section adds details for several past orbiter missions to bring them up to date, and includes the discovery of the Beagle 2 lander apparently intact on the Martian surface.
This section examines planning for missions after Curiosity, including the process of landing site selection. It depicts the activities of NASA’s InSight lander and Perseverance rover, China’s Tianwen-1 lander and Zhurong rover, and orbiting spacecraft including MAVEN, Hope and the Trace Gas Orbiter. Plans for future human exploration of Mars are presented as they were imagined in this period.