To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the Cosmological Double Radio Active Galactic Nuclei (CosmoDRAGoN) project: a large suite of simulated AGN jets in cosmological environments. These environments sample the intra-cluster media of galaxy clusters that form in cosmological smooth particle hydrodynamics (SPH) simulations, which we then use as inputs for grid-based hydrodynamic simulations of radio jets. Initially conical jets are injected with a range of jet powers, speeds (both relativistic and non-relativistic), and opening angles; we follow their collimation and propagation on scales of tens to hundreds of kiloparsecs, and calculate spatially resolved synthetic radio spectra in post-processing. In this paper, we present a technical overview of the project, and key early science results from six representative simulations which produce radio sources with both core- (Fanaroff-Riley Type I) and edge-brightened (Fanaroff-Riley Type II) radio morphologies. Our simulations highlight the importance of accurate representation of both jets and environments for radio morphology, radio spectra, and feedback the jets provide to their surroundings.
We present a new high-resolution neutral atomic hydrogen (Hi) survey of ring galaxies using the Australia Telescope Compact Array (ATCA). We target a sample of 24 ring galaxies from the Buta (1995) Southern Ring Galaxy Survey Catalogue in order to study the origin of resonance-, collisional- and interaction-driven ring galaxies. In this work, we present an overview of the sample and study their global and resolved Hi properties. In addition, we also probe their star formation properties by measuring their star formation rates (SFR) and their resolved SFR surface density profiles. We find that a majority of the barred galaxies in our sample are Hi-deficient, alluding to the effects of the bar in driving their Hi deficiency. Furthermore, for the secularly evolving barred ring galaxies in our sample, we apply Lindblad’s resonance theory to predict the location of the resonance rings and find very good agreement between predictions and observations. We identify rings of Hi gas and/or star formation co-located at one or the other major resonances. Lastly, we measure the bar pattern speed ($\Omega_{\textrm{bar}}$) for a sub-sample of our galaxies and find that the values range from 10–90 $\textrm{km s}^{-1}$kpc$^{-1}$, in good agreement with previous studies.
In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of ${\sim} 450\, {\textrm{deg}}^{2}\,\textrm{h}^{-1}$, the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 ${\textrm{pc cm}}^{-3}$, to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from ${\sim} 3\% $ of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).
From Space debris to asteroid strikes to anti-satellite weapons, humanity's rapid expansion into Space raises major environmental, safety, and security challenges. In this book, Michael Byers and Aaron Boley, an international lawyer and an astrophysicist, identify and interrogate these challenges and propose actionable solutions. They explore essential questions from, 'How do we ensure all of humanity benefits from the development of Space, and not just the world's richest people?' to 'Is it possible to avoid war in Space?' Byers and Boley explain the essential aspects of Space science, international law, and global governance in a fully transdisciplinary and highly accessible way. Addressing the latest and emerging developments in Space, they equip readers with the knowledge and tools to engage in current and critically important legal, policy, and scientific debates concerning the future development of Space. This title is also available as Open Access on Cambridge Core.
As Russell and Vogt pointed out in the 1920s, the properties of a main sequence star depend crucially on its mass. After the main sequence, the star’s mass is also vitally important in determining its physical properties. Will helium burning begin or not? If it begins, will it begin with a flash? Will carbon burning begin or not? The answers to these questions, as we have seen, depend primarily on the star’s mass.
When investigating a political scandal, the standard advice is “follow the money.” When investigating stellar structure, a comparably useful piece of advice is “follow the energy.” Since energy cannot be created or destroyed (if we regard mass as a sort of congealed energy), forensic investigation of a star’s energy content will uncover whatever physical processes are hidden in a star’s opaque interior.
Because stars are large and massive compared to a rocky planet like the Earth, we expect that a balance between pressure gradients and gravity inside a star will require very high internal pressure. However, there can be very different ways in which high pressure can be achieved, as two examples from the Earth make clear. Both the atmosphere and the oceans are in hydrostatic equilibrium; air pressure thus decreases with altitude above sea level, while pressure in the ocean increases with depth.
A star can be defined as a self-gravitating ball of gas, usually spherical or spheroidal, that is powered by nuclear fusion in its interior. In this text, we will go slightly beyond the boundaries of this definition to discuss protostars and pre-main sequence stars (not yet powered by fusion), stellar remnants (no longer powered by fusion), and brown dwarfs (too small to be powered by fusion).
In 1938, Ernst Öpik pointed out that if the process that comes into play is thermonuclear fusion, then main sequence stars are powered by fusion in their cores, and red giants are stars that have exhausted their central fuel.
Thus, the Sun has existed for one-third of the total history of the universe. Some stars are older than the Sun; some are younger. In Chapter 6, our examination of main sequence models neglected the question of how stars form.
However, although stars are generally in hydrostatic equilibrium, all stars are also variable. We can distinguish broad families of variation. The most spectacular variation involves catastrophic changes such as supernova explosions. Some stellar variability arises from external influences, such as accretion of mass from a disk or a companion.