To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss the impact of Gaia, the cornerstone mission of the European Space Agency (ESA), on the calibration of the period–luminosity and luminosity–metallicity relations of Cepheids and RR Lyrae stars, with specific reference to data published as part of the most recent Gaia releases: Early Data Release 3 (EDR3), on 19 December 2020, and Data Release 3 (DR3) on 13 June 2022. We provide future perspectives for the Gaia mission, including extensions approved by ESA and a tentative schedule of the data releases that will take place in the next few years. We briefly present plans for cross-Coordination Unit processing of Gaia data of Cepheids and RR Lyrae stars for DR4 and conclude by outlining the expected improvement in astrometry at the end of the extended Gaia mission, which will help to further strengthen the calibration of the first rung of the cosmic distance ladder.
We present a method to estimate distances to AGB stars, utilizing the rich infrared data sets available for these infrared-bright targets. The method is based on the assumption that stars with intrinsically similar properties (metallicity, initial mass, etc.) produce similar spectral energy distributions (SEDs) and similar luminosities. We here discuss the results for AGB stars belonging to the BAaDE survey sample whose distances were calibrated using the template SEDs of stars with their VLBI parallaxes. As VLBI parallaxes are only known for a handful of sources, the resulting templates only cover a small subset of the BAaDE sample. Additional methods to derive suitable templates will therefore also be required. The work on expanding the template set is promising, although more fine tuning is still needed.
In the context of a perturbed two body problem, in which the Keplerian motion of the small object (the satellite) is perturbed by the oblateness of the central body (the asteroid) and the attraction of a third body (the Sun), we discuss the long-term evolution of the orbital elements of a satellite orbiting an oblate body, with a particular focus on the behavior of the inclination and the longitude of the ascending node. We derive analytically the position of the Laplace plane as a function of several parameters and use this solution to analyse the long-term evolution of distant circular orbits. The analytical study is complemented by numerical tests, performed in the context of both Cartesian and Hamiltonian frameworks. The results give a description of the orbital dynamical environment of asteroids and reveal the parameters that play a key role in the long-term stability of distant circular orbits.
The MAximum-entropy ReconStruction (MARS) method is a free-form strong-lensing (SL) reconstruction algorithm, which adopts the maximum cross-entropy as a regularization. MARS shows remarkable convergence of multiple images in both source (∼0.”02) and image planes (∼0.”05 – 0.”1) while suppressing spurious fluctuations. Although the reconstruction requires a large number of free parameters exceeding ∼19,000, our implementation through PyTorch can obtain the reconstruction within hours. From our test using the publicly available synthetic clusters, we have verified that the reconstructed radial mass profiles are consistent with the truth within 1 percent. This makes MARS one of the best-performing SL reconstruction methods. We apply MARS to the six Hubble Frontier Fields clusters and present new mass reconstruction results. We also reconstruct a mass model of Abell 2744 using both weak-lensing (WL) and SL data from the JWST observations, with the largest dataset of Abell 2744, including 286 SL multiple images and ∼350 arcmin−2 WL constraints.
Forthcoming data from the Vera Rubin Observatory, Euclid and Roman telescopes are expected to increase the number of strong lenses by two orders of magnitude. With current discovery methods these would be accompanied by an even greater number of false positives. In that context we find that using an ensemble of classifiers would provide a more complete sample of high-purity lenses and present methods to post-process the outputs of such classifiers to give reliable probabilities that a given image contains a lens.
A key ingredient in the earliest evolutionary phase of high-mass (M>8 M⊙) star formation (HMSF) is the presence of a jet/outflow system. To study its role in HMSF, we have carried out high resolution (0.1″) VLA K-band (18-26.5 GHz) observations toward IRAS 19035+0641 A, identified as a high-mass protostellar jet candidate based on previous cm continuum data. Our observations resolve the continuum emission into an elongated structure in the NE-SW direction, confirming that the K-band continuum arises from an ionized jet. Furthermore, we detected several 22.2 GHz H2O maser spots aligned in a direction consistent with the jet axis. Zeeman splitting was detected in the strongest maser spot. In this paper, we present our results and discuss the implications of our findings.
Recent ALMA observations detected protostellar outflows in 70-μm dark infrared dark clouds (IRDCs). These sources are candidates for the initial stages of high-mass star formation. We launched a new survey for free-free emission from outflow shocks using the Yamaguchi Interferometer (YI) at 8 GHz. We aim to catalog “proto-high-mass protostar” candidates that are still in the low to intermediate-mass phase. We selected starless-like clumps without any 70-μm point source from Traficante et al. (2015). We currently detected 82 sources from 167 clumps. 37 of them are fainter than 20 mJy (down to a few mJy). They tend to associate with colder and denser clumps that are suitable for star formation. This fact suggests that, at least, some of them trace star-formation activities. The highest-density clumps are, in fact, associated with several masers and molecular outflows. Furthermore, some of them have already shown a signature of ongoing cluster formation.
We briefly consider the history of maser variability, and of flaring variability specifically. We consider six proposed flare generation mechanisms, and model them computationally with codes that include saturation and 3-D structure (the last mechanism is modelled in 1-D). Fits to observational light curves have been made for some sources, and we suggest that a small number of observational parameters can diagnose the flare mechanism in many cases. The strongest flares arise from mechanisms that can increase the number density of inverted molecules in addition to by geometrical effects, and in events where unsaturated quiescent masers become saturated during the flare.
We suggest an advanced algorithm for semi-analytical calculation of orbital perturbations of Earth artificial satellites caused by the gravity attraction of the “3rd-bodies” (the Moon, the Sun, major planets). A new accurate analytical series for the relevant perturbation function is developed. It is obtained through a careful spectral analysis of the long-term DE406 planetary/lunar ephemerides and valid over 2000 years, 1000-3000. The series is used in the author’s semi-analytical model of satellite motion. The results of the motion prediction of several Earth satellites obtained by means of the semi-analytical model and a numerical integration method are compared.
Systems near mean-motion resonances (MMRs) are subject to large transit-timing variations (TTVs). The amplitude and period of the TTVs strongly depend on the distance to exact MMR and the planetary eccentricities which are shaped during the formation and long-term evolution of the system. For close-in planets, the tides raised by the star provide a source of dissipation, placing the planets further away from the MMR. In this work, we will discuss how the tidal interactions with the central star play an important role in shaping the period ratios and resonant angles in resonant chains. Moreover, we will show how they can impact the TTVs and therefore how the TTVs could serve as a means to put constraints on the tidal history of planetary systems. The study will focus on the four-planet resonant chain of Kepler-80.
Close-in planets undergo strong tidal effects with their host stars that modify their spins and orbits. Adopting a Maxwell rheology, it has been shown that for the 5/2 and 7/2 spin-orbit resonances, the obliquity of these planets can stabilise at a high value. Here, we show that these high obliquity metastable states can also be observed for the same spin-orbit resonances considering the Andrade rheology.
The database of circumstellar OH masers by Engels & Bunzel (2015) was updated to include new 1612, 1665, and 1667 MHz OH maser observations published between 2015 and 2022. A cross-correlation of the database was made with infrared catalogues (AllWISE and 2MASS) and with GAIA DR3. This led frequently to significantly improved coordinates and identified contaminations with non-stellar sources. About 40% of all OH maser-detected stars were not detected by GAIA. These are mostly representatives of the population of highly obscured stars at the end of AGB or at the beginning of post-AGB evolution.
Cepheids have been the cornerstone of the extragalactic distance scale for a century. With high-quality data, these luminous supergiants exhibit a small dispersion in their Leavitt (period–luminosity) relation, particularly at longer wavelengths, and few methods rival the precision possible with Cepheid distances. In these proceedings, we present an overview of major observational programs pertaining to the Cepheid extragalactic distance scale, its progress and remaining challenges. In addition, we present preliminary new results on Cepheids from the James Webb Space Telescope (JWST). The launch of JWST has opened a new chapter in the measurement of extragalactic distances and the Hubble constant. JWST offers a resolution three times that of the Hubble Space Telescope (HST) with nearly 10 times the sensitivity. It has been suggested that the discrepancy in the value of the Hubble constant based on Cepheids compared to that inferred from measurements of the cosmic microwave background requires new and additional physics beyond the standard cosmological model. JWST observations will be critical in reducing remaining systematics in the Cepheid measurements and for confirming if new physics is indeed required. Early JWST data for the galaxy, NGC 7250 show a decrease in scatter in the Cepheid Leavitt law by a factor of two relative to existing HST data and demonstrate that crowding/blending effects are a significant issue in a galaxy as close as 20 Mpc.
The ALMA observations of the high-mass star-forming region G10.34-0.14 reveal the existence of three massive hot cores. The most massive of these cores, core S1, exhibits both high and low-velocity jet/outflow in the CO, SiO, and CH3OH. It is associated with water and Class I methanol masers. The core N shows a low-velocity CO outflow and is associated with an Extended Green Object, along with Class I and II methanol masers. The characteristics of the outflows and masers in these two cores suggest they are in different stage of evolution and varying physical conditions.
We imaged the excited OH maser line at 6.035 GHz associated with the 6.7 GHz methanol masers in a selected sample of high-mass young stellar objects using the European VLBI Network. The excited OH emission was found in a survey of methanol maser sources carried out since 2018 with the Torun 32-m telescope. The overlap of radial velocities of spectral features of methanol and excited OH suggested that both lines arose in the same volume of gas, therefore, we verified this hypothesis with the interferometric data. Here, we present the first images at the milliarcsecond scale of both maser transitions and identify the Zeeman pairs at the ex-OH line estimating the strength of the magnetic field in G43.149+00.013 (W49N).
We present the prospects from astrometric spectral line VLBI in the era of ngEHT. We review the potential targets, that span many interesting science cases. We summarise the approaches that have been demonstrated to work at lower frequencies and touch on the simulations that give us great confidence that these same approaches will continue to work at sub-mm wavelengths. We conclude that this is a worthwhile pursuit with a high probability of success.
We present initial results from our JWST NIRSpec program to study the α-abundances in the M31 disk. The Milky Way has two chemically-defined disks, the low-α and high-α disks, which are closely related to the thin and thick disks, respectively. The origin of the two populations and the α-bimodality between them is not entirely clear, although there are now several models that can reproduce the observed features. To help constrain the models and discern the origin, we have undertaken a study of the chemical abundances of the M31 disk using JWST NIRSpec, in order to determine whether stars in M31’s disk also show an α-abundance bimodality. Approximately 100 stars were observed in our single NIRSpec field at a projected distance of 18 kpc from the M31 center. The 1-D extracted spectra have an average signal-to-noise ratio of 85 leading to statistical metallicity precision of 0.016 dex, α-abundance precision of 0.012 dex, and a radial velocity precision 8 km s-1 (mostly from systematics). The initial results indicate that, in contrast to the Milky Way, there is no α-bimodality in the M31 disk, and no low-α sequence. The entire stellar population falls along a single chemical sequence very similar to the MW’s high-α component which had a high star formation rate. While this is somewhat unexpected, the result is not that surprising based on other studies that found the M31 disk has a larger velocity dispersion than the MW and is dominated by a thick component. M31 has had a more active accretion and merger history than the MW which might explain the chemical differences.
The Maser Monitoring Organisation is a collection of researchers exploring the use of time-variable maser emission in the investigation of astrophysical phenomena. The forward directed aspects of research primarily involve using maser emission as a tool to investigate star formation. Simultaneously, these activities have deepened knowledge of maser emission itself in addition to uncovering previously unknown maser transitions. Thus a feedback loop is created where both the knowledge of astrophysical phenomena and the utilised tools of investigation themselves are iteratively sharpened. The project goals are open-ended and constantly evolving, however, the reliance on radio observatory maser monitoring campaigns persists as the fundamental enabler of research activities within the group.
The gravitational lensing signal produced by a galaxy or a galaxy cluster is determined by its total matter distribution, providing us with a way to directly constrain their dark matter content. State-of-the-art numerical simulations successfully reproduce many observed properties of galaxies and can be used as a source of mock observations and predictions. Many gravitational lensing studies aim at constraining the nature of dark matter, discriminating between cold dark matter and alternative models. However, many past results are based on the comparison to simulations that did not include baryonic physics. Here we show that the presence of baryons can significantly alter the predictions: we look at the structural properties (profiles and shapes) of elliptical galaxies and at the inner density slope of subhaloes. Our results demonstrate that future simulations must model the interplay between baryons and alternative dark matter, to generate realistic predictions that could significantly modify the current constraints.