To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
From prehistoric times has come recognition that sunlight and firelight provide warmth, and that such illumination casts shadows. Expressed in more contemporary terms one would say that light travels in rays, and that this radiation has the potential to provide heat energy to absorbing material. From the time of Newton it has been known that light sources emit radiation comprising a distribution of colors. During the nineteenth century it was recognized that radiation had characteristics of transverse waves (with wavelength associated to color) but until the late twentieth century, when lasers became laboratory tools, it was hardly necessary to delve into the equations of electromagnetic theory to treat such experiments as were then possible; interest lay primarily with thermodynamic considerations of energy flow or with measurements of the dark or bright lines seen in the distribution of light that, after passing through a slit, was dispersed by a prism or grating into constituent colors. Although laser light sources are essential for the types of atomic excitation considered in this monograph, the legacy from thermal radiation still influences many interpretations of the interaction between radiation and matter, and it is therefore useful to summarize some of those concepts.
The mathematics needed for describing laser radiation, or polarized light in general, has much in common with the mathematics of quantum theory discussed starting in Sec. 3.5 and specialized to two-level atoms in Sec. 5.6. In both cases one deals with two complex-valued functions – independent electric field amplitudes or probability amplitudes – whose absolute squares are measurable.
The quantum world within an atom or molecule that once attracted explorations only by academic physicists now provides fertile sustenance for chemists seeking control of chemical reactions and for engineers developing ever smaller electronic devices or tools for processing information with greater security. Whereas the first pioneers could only discover the most elementary properties – the discrete energy levels that characterize the internal structures of atoms and the radiative transitions that link these structures to our external world – it is now possible to alter that structure at will, albeit briefly.
Objective
This monograph presents the physical principles that describe such deliberately crafted changes, namely how single atoms or molecules (or other simple quantum systems) are affected by coherent interactions, primarily laser light – a subject that has been regarded first as a part of quantum electronics and then quantum optics but is most generally described as coherent atomic excitation [Sho90].
This physics has relevance to such basic concerns as the detection and quantitative analysis of trace amounts of chemicals, the catalysis or control of chemical reactions, the alignment of molecules, and the processing of quantum information. The physics necessarily involves elementary quantum mechanics, but it has many associations to the classical dynamics that governs macroscopic objects – waves and particles. The mathematics that quantifies the changes is that of differential equations, specifically coupled ordinary differential equations (ODEs), whose parameters incorporate the controls of experimenters and whose solutions, appropriately interpreted, quantify the resulting changes.
The philosophers who first hypothesized the existence of “atoms” had in mind the smallest particles of matter that could preserve identifiable chemical properties – building blocks that could be assembled into familiar substances. Little more than this definition – tiny masses that carry kinetic energy and undergo collisions – led to the fruitful quantitative explanation of vapor properties in the kinetic theory of gases, and to such devices as mass spectrometers and ion accelerators.
Atoms and molecules. As became clear during the early twentieth century, these “chemical atoms’ from which materials are constructed have internal structure that endows them with their chemical attributes: one or more positively charged nuclei, each a few femtometers (1 fm = 10−13 cm = 10−15 m) in diameter, surrounded by one or more much lighter negatively charged electrons whose motion fills a volume of at least a few cubic angstroms (1 Å= 10−8 cm = 10 nm) in diameter. Nowadays we distinguish between particles having multiple nuclei (molecules) and those with a single nucleus (atoms); when the positive and negative charges are unbalanced these are ions (positive or negative). The simplest atom, hydrogen, has a single electron; the most complex atoms have more than a hundred electrons. Although I will often refer to “atoms”, usually the discussion applies equally well to molecules or to any other structure whose constituents exhibit distinct quantum properties, as manifested by discrete energies.
Nuclei. The nuclei of atoms are, in turn, composed of protons and neutrons.
Throughout this monograph the effect of radiation upon a quantum system has been presented as an interaction between an atomic moment (usually the electric dipole moment) and a pulse of nearly periodic electromagnetic radiation, typically the electric field of that radiation. The strength of the interaction of such a field with an individual atom or molecule is typically parametrized by the field intensity (or radiation irradiance) and a transition moment (or oscillator strength). When the atoms form macroscopic aggregates, through which the laser radiation must pass, the laser-induced alteration of atomic states produces new fields that subtract from or add to the original field [Sho90, Chap. 12]. As a result, pulses propagating through matter become altered. The pulse amplitude will, at first, decrease as energy is absorbed by the atoms, but more dramatic effects can occur that drastically alter the shape of the pulse as it travels through greater thicknesses of matter [Sho90, Chap. 9]. Furthermore, new frequencies may be generated – the phenomena of nonlinear optics [Rei84; Gae06; Boy08].
Prior to the advent of laser radiation there was little interest in short pulses, and the equations describing radiation dealt with the flow of energy through matter that could absorb or divert the radiation, embodied in the theory of radiative transfer [Cha60; Tuc75; Ryb85; Car07]. Such descriptions characterized the radiation–matter interaction by a static complex-valued index of refraction, whose imaginary part produced absorption while the real (dispersive) part altered the propagation velocity [Bre32; Mea60; Bor99].
The fields within cavities differ in an important respect from those of a laser beam in free space: The bounding surfaces that define the cavity enclosure impose constraints that limit the fields to discrete modes, characterized in part by discrete frequencies. The surfaces enclosing a cavity are boundaries where the dielectric properties change abruptly; they are idealized as discontinuities of the susceptibility ∊ and permeability μ. Across any such surface the normal component of the B field is continuous, as is the transverse component of the E field. These conditions imply, for example, that along a perfectly conducting surface (an idealized mirror) the electric field has a node. The allowed fields (the discrete mode fields) are then particular solutions to the Maxwell equations, or their conversion into Helmholtz equations, that vanish along bounding surfaces.
Figure 4.2 of Sec. 4.1.3 depicts two classes of cavities. Frame (a) shows a cylindrical cavity used for microwave radiation. The cavity completely encloses the field, apart from a small aperture through which the atoms pass. Frame (b) shows a prototype optical cavity, in which the cavity field is that of a beam confined along one axis. Idealized as perfect conductors, the confining mirrors permit only integral half waves between them, and the frequencies of such plane waves are correspondingly discrete. Because the enclosing endmirrors are not perfectly reflecting there will occur some loss through them, along the cavity axis, and the field is not strictly monochromatic.
We generalize the non-linear sigma-model to include interactions in the Cooper channel. As its stationary point approximation we derive coupled Usadel, selfconsistency and Poisson equations. We use them to derive the Josephson current of an SNS junction, as well as the dispersion of the collective Carlson–Goldman mode of the superconductors. In the gapless case one may explicitly integrate out fermionic degrees of freedom, obtaining the time-dependent Ginzburg–Landau action. The latter is used to derive the Aslamazov–Larkin fluctuation correction to the normal state conductivity.
Cooper channel interactions
So far we have been mostly discussing the effects of singlet channel electron–electron interactions. We turn now to the Cooper channel interactions, see Eqs. (9.57)–(9.59). As was realized by Bardeen, Cooper and Schrieffer (BCS) [214], exchange of virtual phonons with large wavenumbers q ∼ kF mediates effective attractive interactions in the Cooper channel. The latter lead to formation of two-electron bound states – Cooper pairs, which form a condensate below a certain critical temperature Tc. The superfluid current of such a condensate is charged and results in a phenomenon known as superconductivity. In this chapter we restrict ourselves to the theory of disordered superconductors, i.e. those where Tc « ħ/τel. This condition is indeed fulfilled for many conventional superconductors (but not for cold atom realizations). It actually considerably simplifies the theory by ensuring the spatially local character of the correlation functions.