To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Quantum Mechanics in Nanoscience and Engineering covers both elementary and advanced quantum mechanics within a coherent and self-contained framework. Undergraduate students of physics, chemistry and engineering will find comprehensive coverage of their introductory quantum mechanics courses, and graduate students will gain an understanding of additional tools and concepts necessary to describe real world phenomena. Each topic presented is first motivated by an experimental technique, phenomenon or concept derived directly from the realm of nanoscience and technology. The machinery of quantum mechanics is described and reinforced through the perspective of nanoscale phenomena, and in this manner practical and fundamental questions are raised and answered. The main text remains fluent and accessible by leaving technical details and mathematical proofs to guided exercises. Introductory readers may overlook these exercises, while rigorous students can benefit from reading the guidance or solving the exercises in full to strengthen and consolidate their understanding of the material.
The Ising model provides a detailed mathematical description of ferromagnetism and is widely used in statistical physics and condensed matter physics. In this Student's Guide, the author demystifies the mathematical framework of the Ising model and provides students with a clear understanding of both its physical significance, and how to apply it successfully in their calculations. Key topics related to the Ising model are covered, including exact solutions of both finite and infinite systems, series expansions about high and low temperatures, mean-field approximation methods, and renormalization-group calculations. The book also incorporates plots, figures, and tables to highlight the significance of the results. Designed as a supplementary resource for undergraduate and graduate students, each chapter includes a selection of exercises intended to reinforce and extend important concepts, and solutions are also available for all exercises.