To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
NASA’s all-sky survey mission, the Transiting Exoplanet Survey Satellite (TESS), is specifically engineered to detect exoplanets that transit bright stars. Thus far, TESS has successfully identified approximately 400 transiting exoplanets, in addition to roughly 6 000 candidate exoplanets pending confirmation. In this study, we present the results of our ongoing project, the Validation of Transiting Exoplanets using Statistical Tools (VaTEST). Our dedicated effort is focused on the confirmation and characterisation of new exoplanets through the application of statistical validation tools. Through a combination of ground-based telescope data, high-resolution imaging, and the utilisation of the statistical validation tool known as TRICERATOPS, we have successfully discovered eight potential super-Earths. These planets bear the designations: TOI-238b (1.61$^{+0.09} _{-0.10}$ R$_\oplus$), TOI-771b (1.42$^{+0.11} _{-0.09}$ R$_\oplus$), TOI-871b (1.66$^{+0.11} _{-0.11}$ R$_\oplus$), TOI-1467b (1.83$^{+0.16} _{-0.15}$ R$_\oplus$), TOI-1739b (1.69$^{+0.10} _{-0.08}$ R$_\oplus$), TOI-2068b (1.82$^{+0.16} _{-0.15}$ R$_\oplus$), TOI-4559b (1.42$^{+0.13} _{-0.11}$ R$_\oplus$), and TOI-5799b (1.62$^{+0.19} _{-0.13}$ R$_\oplus$). Among all these planets, six of them fall within the region known as ‘keystone planets’, which makes them particularly interesting for study. Based on the location of TOI-771b and TOI-4559b below the radius valley we characterised them as likely super-Earths, though radial velocity mass measurements for these planets will provide more details about their characterisation. It is noteworthy that planets within the size range investigated herein are absent from our own solar system, making their study crucial for gaining insights into the evolutionary stages between Earth and Neptune.
Spherical symmetry for a metric is defined and used to build a two-function ansatz. The Schwarzschild spacetime emerges as the solution to Einstein’s equation with, and we see how the Newtonian potential is related to the linearized Schwarzschild metric. The lightlike and spacelike geodesics of the metric are explored using exact, approximate, and numerical approaches. Many of the usual experimental tests are covered in detail: perihelion precession, bending of light, and time dilation, for example. The structure of the singularities in the Schwarzschild spacetime is studied using Eddington–Finkelstein and Kruskal–Szekeres coordinates. At the end of the chapter, the Kerr spacetime is introduced, and students are invited to explore its geodesics.
This chapter explains the generation of fuzzy extra dimensions in the context of ordinary Yang–Mills gauge theory and Yang–Mills matrix models. This will play an important role in the context of gravity.
Newtonian gravity is reviewed and an attempt is made to combine it with special relativity, first by expanding the sources from mass to more general mass-energy, and then by considering relativistic force predictions. The gravito-electro-magnetic field equations are developed by analogy with Maxwell’s equations, and using dynamical source configurations familiar from the study of E&M. In addition to the fields, there are predicted particle interactions, like the bending of light, that go beyong Newtonain gravitational forces. Finally, it is clear that this attempt to combine gravity and special relativity lacks the necessary self-coupling of the gravitational field, which carries energy and therefore acts as its own source.
An introduction to field Lagrangians for scalars, vectors, and the Einstein–Hilbert Lagrangian for gravity provides a venue to think about coupling together different field theories. The natural expression of that coupling comes from an action, and we show how the “Euler–Lagrange” field equations enforce the universal coupling of all physical theories to gravity. As an example, the combined field equations of electricity & magnetism and gravity are solved in the spherically symmetric case to give the Reissner–Nordstrøm spacetime associated with the exterior of charged, massive, spherically symmetric central bodies.
Starting from the definition of tensorial objects by their response to coordinate transformation, this chapter builds the flat space vector calculus machinery needed to understand the role of the metric and its associated geodesic curves in general. The emphasis here is on using tensors to build equations that are “generally covariant,” meaning that their content is independent of the coordinate system used to express them. Motivated by the transformation of gravitational energy sources, the gravitational field should be a second-rank tensor, and given the way in which that tensor must show up in a particle motion Lagrangian, it is natural to interpret that tensor as a metric.
Building on mathematical structures familiar from quantum mechanics, this book provides an introduction to quantization in a broad context before developing a framework for quantum geometry in Matrix Theory and string theory. Taking a physics-oriented approach to quantum geometry, this framework helps explain the physics of Yang–Mills-type matrix models, leading to a quantum theory of space-time and matter. This novel framework is then applied to Matrix Theory, which is defined through distinguished maximally supersymmetric matrix models related to string theory. A mechanism for gravity is discussed in depth, which emerges as a quantum effect on quantum space-time within Matrix Theory. Using explicit examples and exercises, readers will develop a physical intuition for the mathematical concepts and mechanisms. It will benefit advanced students and researchers in theoretical and mathematical physics, and is a useful resource for physicists and mathematicians interested in the geometrical aspects of quantization in a broader context.
Detecting and mitigating radio frequency interference (RFI) is critical for enabling and maximising the scientific output of radio telescopes. The emergence of machine learning (ML) methods capable of handling large datasets has led to their application in radio astronomy, particularly in RFI detection. Spiking neural networks (SNNs), inspired by biological systems, are well suited for processing spatio-temporal data. This study introduces the first exploratory application of SNNs to an astronomical data processing task, specifically RFI detection. We adapt the nearest latent neighbours (NLNs) algorithm and auto-encoder architecture proposed by previous authors to SNN execution by direct ANN2SNN conversion, enabling simplified downstream RFI detection by sampling the naturally varying latent space from the internal spiking neurons. Our subsequent evaluation aims to determine whether SNNs are viable for future RFI detection schemes. We evaluate detection performance with the simulated HERA telescope and hand-labelled LOFAR observation dataset the original authors provided. We additionally evaluate detection performance with a new MeerKAT-inspired simulation dataset that provides a technical challenge for machine-learnt RFI detection methods. This dataset focuses on satellite-based RFI, an increasingly important class of RFI and is an additional contribution. Our SNN approach remains competitive with the original NLN algorithm and AOFlagger in AUROC, AUPRC, and F1-scores for the HERA dataset but exhibits difficulty in the LOFAR and Tabascal datasets. However, our method maintains this accuracy while completely removing the compute and memory-intense latent sampling step found in NLN. This work demonstrates the viability of SNNs as a promising avenue for ML-based RFI detection in radio telescopes by establishing a minimal performance baseline on traditional and nascent satellite-based RFI sources and is the first work to our knowledge to apply SNNs in astronomy.
Generation of science-ready data from processed data products is one of the major challenges in next-generation radio continuum surveys with the Square Kilometre Array (SKA) and its precursors, due to the expected data volume and the need to achieve a high degree of automated processing. Source extraction, characterization, and classification are the major stages involved in this process. In this work we focus on the classification of compact radio sources in the Galactic plane using both radio and infrared images as inputs. To this aim, we produced a curated dataset of $\sim$20 000 images of compact sources of different astronomical classes, obtained from past radio and infrared surveys, and novel radio data from pilot surveys carried out with the Australian SKA Pathfinder. Radio spectral index information was also obtained for a subset of the data. We then trained two different classifiers on the produced dataset. The first model uses gradient-boosted decision trees and is trained on a set of pre-computed features derived from the data, which include radio-infrared colour indices and the radio spectral index. The second model is trained directly on multi-channel images, employing convolutional neural networks. Using a completely supervised procedure, we obtained a high classification accuracy (F1-score > 90%) for separating Galactic objects from the extragalactic background. Individual class discrimination performances, ranging from 60% to 75%, increased by 10% when adding far-infrared and spectral index information, with extragalactic objects, PNe and Hii regions identified with higher accuracies. The implemented tools and trained models were publicly released and made available to the radioastronomical community for future application on new radio data.
We present source detection and catalogue construction pipelines to build the first catalogue of radio galaxies from the 270 $\rm deg^2$ pilot survey of the Evolutionary Map of the Universe (EMU-PS) conducted with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The detection pipeline uses Gal-DINO computer vision networks (Gupta et al. 2024, PASA, 41, e001) to predict the categories of radio morphology and bounding boxes for radio sources, as well as their potential infrared host positions. The Gal-DINO network is trained and evaluated on approximately 5 000 visually inspected radio galaxies and their infrared hosts, encompassing both compact and extended radio morphologies. We find that the Intersection over Union (IoU) for the predicted and ground-truth bounding boxes is larger than 0.5 for 99% of the radio sources, and 98% of predicted host positions are within $3^{\prime \prime}$ of the ground-truth infrared host in the evaluation set. The catalogue construction pipeline uses the predictions of the trained network on the radio and infrared image cutouts based on the catalogue of radio components identified using the Selavy source finder algorithm. Confidence scores of the predictions are then used to prioritise Selavy components with higher scores and incorporate them first into the catalogue. This results in identifications for a total of 211 625 radio sources, with 201 211 classified as compact and unresolved. The remaining 10 414 are categorised as extended radio morphologies, including 582 FR-I, 5 602 FR-II, 1 494 FR-x (uncertain whether FR-I or FR-II), 2 375 R (single-peak resolved) radio galaxies, and 361 with peculiar and other rare morphologies. Each source in the catalogue includes a confidence score. We cross-match the radio sources in the catalogue with the infrared and optical catalogues, finding infrared cross-matches for 73% and photometric redshifts for 36% of the radio galaxies. The EMU-PS catalogue and the detection pipelines presented here will be used towards constructing catalogues for the main EMU survey covering the full southern sky.
Clusters of galaxies have been found to host Mpc-scale diffuse, non-thermal radio emission in the form of central radio halos and peripheral relics. Turbulence and shock-related processes in the intra-cluster medium are generally considered responsible for the emission, though details of these processes are still not clear. The low surface brightness makes detection of the emission a challenge, but with recent surveys with high-sensitivity radio telescopes we are beginning to build large samples of these sources. The Evolutionary Map of the Universe (EMU) is a Southern Sky survey being performed by the Australian SKA Pathfinder (ASKAP) over the next few years and is well-suited to detect and characterise such emission. To assess prospects of the full survey, we have performed a pilot search of diffuse sources in 71 clusters from the Planck Sunyaev–Zeldovich (SZ) cluster catalogue (PSZ2) found in archival ASKAP observations. After re-imaging the archival data and performing both (u, v)-plane and image-plane angular scale filtering, we detect 21 radio halos (12 for the first time, excluding an additional six candidates), 11 relics (in seven clusters, and six for the first time, excluding a further five candidate relics), along with 12 other, unclassified diffuse radio sources. From these detections, we predict the full EMU survey will uncover up to $\approx 254$ radio halos and $\approx 85$ radio relics in the 858 PSZ2 clusters that will be covered by EMU. The percentage of clusters found to host diffuse emission in this work is similar to the number reported in recent cluster surveys with the LOw Frequency ARray (LOFAR) Two-metre Sky Survey [Botteon, et al. 2022a, A&A, 660, A78], suggesting EMU will complement similar searches being performed in the Northern Sky and provide us with statistically significant samples of halos and relics at the completion of the full survey. This work presents the first step towards large samples of the diffuse radio sources in Southern Sky clusters with ASKAP and eventually the SKA.