To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The field of optoelectronics is currently in full expansion, drawing to its classrooms and laboratories numerous science and engineering students eager to master the discipline. From the lecturer's perspective, optoelectronics is a considerable challenge to teach as it emerges from a complex interplay of separate and often seemingly disjointed subjects such as quantum optics, semiconductor band structure, or the physics of carrier transport in electronic devices. As a result, the student (or lecturer) is left to navigate through a vast literature, often found to be confusing and incoherent.
The aim of this text is to teach optoelectronics as a science in itself. To do so, a tailored presentation of its various sub-disciplines is required, emphasizing within each of these, those concepts which are key to the study of optoelectronics. Also, we were determined to offer a partial description of quantum mechanics oriented towards its application in optoelectronics. We have therefore limited ourselves to a utilitarian treatment without elaborating on many fundamental concepts such as electron spin or spherical harmonic solutions to the hydrogen atom. On the other hand, we have placed emphasis on developing formalisms such as those involved in the quantization of the electromagnetic field (well suited to a discussion of spontaneous emission), or the density matrix formalism (of value in treating problems in non-linear optics).
Similarly, our treatment of semiconductor physics ignores any discussion of the effect of the crystallographic structure in these materials.
In Chapter 5 we saw that the principal characteristic of a semiconducting material is the existence of forbidden energy bands, or gaps, acting to separate the electronrich valence band from the electron-poor conduction band. Both the bandgap and the energy bands are determined by the bulk potential of the crystalline material.
At the basis of bandstructure engineering is the heterojunction, which is obtained by growing one semiconductor layer onto another. For certain carefully selected semiconductors possessing compatible crystal structures and lattice spacings, it is possible to achieve epitaxial growth of one material onto another. In this case, the atomic positions of the second material form a virtually perfect continuation of the underlying substrate lattice. Under carefully controlled conditions, the compositional transition between the two materials can be made almost perfectly abrupt (i.e. with heterointerfaces in many instances being defined on a monolayer scale).
Away from the heterojunction, and deep within the bulk of the two materials, the electrons are subject to volumetric potentials (bandgaps and band structures) characteristic of each of the constituent bulk semiconductors. In the vicinity of the heterojunction, the crystal potential changes abruptly from one material to the other. A quantitative description of this change in potential requires that calculations be performed at the atomic level. These calculations (performed numerically on computers) are extremely involved and lie outside the scope of this book. Such calculations indicate, however, that over the scale of a few atomic layers near the interface, there is a transfer of electrical charge.
One of the most impressive accomplishments of wave optics is its success in providing a coherent and succinct description of the interactions between electromagnetic waves and matter (gases, solids, etc.). Maxwell's equations, which describe the propagation of light, and the Laplace–Lorentz equations, which describe the source terms of light, allow one to take into account the phenomena of refraction, diffusion, and diffraction of light by dense media. It is amazing – to say the least – that such a theory can account for the complex interactions of an electromagnetic wave with an immense ensemble of atoms (each approximated in terms of individual harmonic oscillators), by means of a simple optical index nop. Such an achievement is reminiscent and, indeed, on par with the level of concision achieved by the concept of effective mass in representing the interaction of a conduction electron with a crystalline lattice.
In the description of all these effects, an electromagnetic wave with (angular) frequency ω forces free carriers into oscillatory motion at the same frequency, leading to radiative re-emission at this same frequency. This behaviour is a natural by-product of the linear equations we have employed up until now. In this chapter, we will see that non-linear media (i.e. materials whose response to external excitations contains non-linear terms), may by used to perform frequency conversion as evidenced, for example, by second harmonic light generation or optical parametric oscillations.
Because the intensity in two-beam interference fringes varies sinusoidally with the phase difference, it is difficult to locate the fringe maxima or minima, in a photograph of the interference pattern, to better than a tenth of the fringe spacing. In addition, when the number of fringes is small and they are unequally spaced, errors are introduced by the need for nonlinear interpolation to determine the fractional fringe order at any point.
Computer-aided evaluation
One way to obtain higher accuracy is by using a CCD camera interfaced with a computer to sample and store the values of the intensity in the interference pattern at an array of points. These values can then be digitized and processed, using a number of techniques, to obtain the fractional fringe order at these points [Robinson & Reid, 1993]. Preprocessing is usually necessary to reduce speckle noise as well as to correct for local variations in image brightness.
Fourier-transform techniques
An additional tilt introduced in one of the beams (say, along the x direction) generates background fringes corresponding to a spatial carrier frequency. These fringes are modulated by the additional phase difference between the beams due to the changes in the object [Takeda, Ina & Kobayashi, 1982]. If the spatial carrier frequency is sufficiently high, the Fourier transform of the intensity distribution in the interference pattern can be processed to obtain the phase difference.