To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While writing this book I was reminded at times of what Professor Francis Low used to say when I took his class on undergraduate electromagnetism at the University of Illinois, Urbana-Champaign. “Be sure to understand the subject thoroughly,” he said, “otherwise, your only other chance will be when you have to teach it.” Knowing now what I know by having written this book, I would add that, if at that point one still does not understand the subject, there will be yet another opportunity when writing a book on it. That was certainly the case with me and this book.
For the last twenty years or so I have taught a one-year graduate course in quantum mechanics at the University of California, Riverside. I have used several books, including the text by Schiff which also happens to be the text I used when I was taking my graduate courses at the University of California, Berkeley (along with my class notes from Professor Eyvind Wichmann who taught the quantum electrodynamics course). However, it became clear to me that I would need to expand the subject matter considerably if I wanted the book not only to be as thorough and up-to-date as possible but also organized so that one subject followed the other in a logical sequence. I hope I have succeeded.
We summarize below some of the postulates and definitions basic to our formalism, and present some important results based on these postulates. The formalism is purely mathematical in nature with very little physics input, but it provides the structure within which the physical concepts that will be discussed in the later chapters will be framed.
State vectors
It is important to realize that the Quantum Theory is a linear theory in which the physical state of a system is described by a vector in a complex, linear vector space. This vector may represent a free particle or a particle bound in an atom or a particle interacting with other particles or with external fields. It is much like a vector in ordinary three-dimensional space, following many of the same rules, except that it describes a very complicated physical system. We will be elaborating further on this in the following.
The mathematical structure of a quantum mechanical system will be presented in terms of the notations developed by Dirac.
A physical state in this notation is described by a “ket” vector, |〉, designated variously as |α〉 or |ψ〉 or a ket with other appropriate symbols depending on the specific problem at hand. The kets can be complex. Their complex conjugates, |〉*, are designated by 〈| which are called “bra” vectors. Thus, corresponding to every ket vector there is a bra vector. These vectors are abstract quantities whose physical interpretation is derived through their so-called “representatives” in the coordinate or momentum space or in a space appropriate to the problem under consideration.