To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we develop the conditions to observe quantum fluctuations and quantum phenomena (entanglement, superpositions, etc.) in quantum circuits. Assuming the right conditions of temperature, we develop the quantum mechanical theory that models those fluctuations in a circuit built from nondissipative superconducting elements. We use this theory of circuit quantization to obtain the quantum Hamiltonians for microwave resonators and waveguides, for superconducting qubits of various types, and for other elements such as SQUIDs. The chapter closes with an illustration of how the same theory provides us with numerical methods to study the eigenstates, eigenenergies, and dynamics of said Hamiltonians.
In this chapter, we review the basic properties of superconductors, illustrating that they go beyond describing a metal without resistance. We develop London's mesoscopic theory of superconductivity as a quantum mechanical description of the charged superfluid, which accounts for the behavior of the superconductor under electromagnetic fields. Using this theory, we explain the flux quantization for supercurrents flowing in closed loops and derive the energetics of the Josephson junction from the tunneling of Cooper pairs.
This chapter is the introduction to this book, its motivation and its design and how it can be applied to the design of undergraduate and graduate courses on quantum optics and superconducting quantum circuits.
In this chapter, we review basic concepts from quantum mechanics that will be required for the study of superconducting quantum circuits. We review the fundamental idea of energy quantization and how this can be formalized, using Dirac's ideas, to develop a quantum mechanical description that is consistent with the classical theory for a comparable object. We review the notions of quantum state, observable and projective and generalized measurements, particularizing some of these ideas to the simple case of a two-dimensional object or qubit.
Superconducting quantum circuits are among the most promising solutions for the development of scalable quantum computers. Built with sizes that range from microns to tens of metres using superconducting fabrication techniques and microwave technology, superconducting circuits demonstrate distinctive quantum properties such as superposition and entanglement at cryogenic temperatures. This book provides a comprehensive and self-contained introduction to the world of superconducting quantum circuits, and how they are used in current quantum technology. Beginning with a description of their basic superconducting properties, the author then explores their use in quantum systems, showing how they can emulate individual photons and atoms, and ultimately behave as qubits within highly connected quantum systems. Particular attention is paid to cutting-edge applications of these superconducting circuits in quantum computing and quantum simulation. Written for graduate students and junior researchers, this accessible text includes numerous homework problems and worked examples.