To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dealing with all aspects of Monte Carlo simulation of complex physical systems encountered in condensed matter physics and statistical mechanics, this book provides an introduction to computer simulations in physics. The 5th edition contains extensive new material describing numerous powerful algorithms and methods that represent recent developments in the field. New topics such as active matter and machine learning are also introduced. Throughout, there are many applications, examples, recipes, case studies, and exercises to help the reader fully comprehend the material. This book is ideal for graduate students and researchers, both in academia and industry, who want to learn techniques that have become a third tool of physical science, complementing experiment and analytical theory.
Higher-order networks describe the many-body interactions of a large variety of complex systems, ranging from the the brain to collaboration networks. Simplicial complexes are generalized network structures which allow us to capture the combinatorial properties, the topology and the geometry of higher-order networks. Having been used extensively in quantum gravity to describe discrete or discretized space-time, simplicial complexes have only recently started becoming the representation of choice for capturing the underlying network topology and geometry of complex systems. This Element provides an in-depth introduction to the very hot topic of network theory, covering a wide range of subjects ranging from emergent hyperbolic geometry and topological data analysis to higher-order dynamics. This Elements aims to demonstrate that simplicial complexes provide a very general mathematical framework to reveal how higher-order dynamics depends on simplicial network topology and geometry.