To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is a text about probabilistic approximations, which are mathematical statements providing estimates of the distance between the laws of two random objects. As the title suggests, we will be mainly interested in approximations involving one or more normal (equivalently called Gaussian) random elements. Normal approximations are naturally connected with central limit theorems (CLTs), i.e. convergence results displaying a Gaussian limit, and are one of the leading themes of the whole theory of probability.
The main thread of our text concerns the normal approximations, as well as the corresponding CLTs, associated with random variables that are functionals of a given Gaussian field, such as a (fractional) Brownian motion on the real line. In particular, a pivotal role will be played by the elements of the socalled Gaussian Wiener chaos. The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of the Hermite polynomials (which are the orthogonal polynomials associated with the one-dimensional Gaussian distribution), and is now a crucial object in several branches of theoretical and applied Gaussian analysis.
The cornerstone of our book is the combination of two probabilistic techniques, namely the Malliavin calculus of variations and Stein's method for probabilistic approximations.
The Malliavin calculus of variations is an infinite-dimensional differential calculus, whose operators act on functionals of general Gaussian processes. Initiated by Paul Malliavin (starting from the seminal paper [69], which focused on a probabilistic proof of Hörmander's ‘sum of squares’ theorem), this theory is based on a powerful use of infinite-dimensional integration by parts formulae.
Presenting important trends in the field of stochastic analysis, this collection of thirteen articles provides an overview of recent developments and new results. Written by leading experts in the field, the articles cover a wide range of topics, ranging from an alternative set-up of rigorous probability to the sampling of conditioned diffusions. Applications in physics and biology are treated, with discussion of Feynman formulas, intermittency of Anderson models and genetic inference. A large number of the articles are topical surveys of probabilistic tools such as chaining techniques, and of research fields within stochastic analysis, including stochastic dynamics and multifractal analysis. Showcasing the diversity of research activities in the field, this book is essential reading for any student or researcher looking for a guide to modern trends in stochastic analysis and neighbouring fields.
Assuming only basic knowledge of probability theory and functional analysis, this book provides a self-contained introduction to Malliavin calculus and infinite-dimensional Brownian motion. In an effort to demystify a subject thought to be difficult, it exploits the framework of nonstandard analysis, which allows infinite-dimensional problems to be treated as finite-dimensional. The result is an intuitive, indeed enjoyable, development of both Malliavin calculus and nonstandard analysis. The main aspects of stochastic analysis and Malliavin calculus are incorporated into this simplifying framework. Topics covered include Brownian motion, Ornstein–Uhlenbeck processes both with values in abstract Wiener spaces, Lévy processes, multiple stochastic integrals, chaos decomposition, Malliavin derivative, Clark–Ocone formula, Skorohod integral processes and Girsanov transformations. The careful exposition, which is neither too abstract nor too theoretical, makes this book accessible to graduate students, as well as to researchers interested in the techniques.