Skip to main content Accessibility help
×
Hostname: page-component-cc8bf7c57-hbs24 Total loading time: 0 Render date: 2024-12-10T17:14:03.447Z Has data issue: false hasContentIssue false

Biological Cognition

Published online by Cambridge University Press:  23 November 2022

Bryce Huebner
Affiliation:
Georgetown University, Washington DC
Jay Schulkin
Affiliation:
University of Washington

Summary

This Element introduces a biological approach to cognition, which highlights the significance of allostatic regulation and the navigation of challenges and opportunities. It argues that cognition is best understood as a juggling act, which reflects numerous ongoing attempts to minimize disruptions while prioritizing the sources of information that are necessary to satisfy social and biological needs; and it provides a characterization of the architectural constraints, neurotransmitters, and affective states that shape visual perception, as well as the regulatory capacities that sustain flexible patterns of thought and behavior.
Get access
Type
Element
Information
Online ISBN: 9781108982191
Publisher: Cambridge University Press
Print publication: 22 December 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramson, C. I. (2009). A study in inspiration: Charles Henry Turner (1867–1923) and the investigation of insect behavior. Annual Review of Entomology, 54, 343359.Google Scholar
Allen, C. (2017). On (not) defining cognition. Synthese, 194(11), 42334249.Google Scholar
Allen, M., & Tsakiris, M. (2018). The body as first prior: Interoceptive predictive processing and the primacy. The interoceptive mind: From homeostasis to awareness (pp. 2745). Oxford University Press.Google Scholar
Anderson, B. (2016). The attention habit: How reward learning shapes attentional selection. Annals of New York Academy Sciences, 1369(1), 2439.CrossRefGoogle ScholarPubMed
Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. MIT Press.CrossRefGoogle Scholar
Anderson, M. L. (2015). Beyond componential constitution in the brain – Starburst amacrine cells and enabling constraints. In Metzinger, T. & Windt, J. M. (Eds.), Open MIND: 1(T). MIND Group. https://bit.ly/3Tfo1Cv.Google Scholar
Anderson, M. L., & Chemero, A. (2019). The world well gained: Andy Clark and his critics. Oxford University Press.Google Scholar
Archie, E. A., Moss, C. J., & Alberts, S. C. (2011). Friends and relations: Kinship and the nature of female elephant social relationships. In Moss, C., Croze, H., & Lee, P. C. (Eds.), The Amboseli elephants: A long-term perspective on a long-lived mammal (pp. 238–245). University of Chicago Press.Google Scholar
Atzil, S., Gao, W., Fradkin, I., & Barrett, L. F. (2018). Growing a social brain. Nature Human Behaviour, 2(9), 624636.CrossRefGoogle ScholarPubMed
Baccus, S. A., & Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36(5), 909919.Google Scholar
Baden, T., Euler, T., & Berens, P. (2020). Understanding the retinal basis of vision across species. Nature Reviews Neuroscience, 21(1), 520.CrossRefGoogle ScholarPubMed
Barlow, H. B. (1972). Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1(4), 371394.CrossRefGoogle ScholarPubMed
Barrett, L. F. (2017). How emotions are made: The secret life of the brain. Houghton Mifflin Harcourt.Google Scholar
Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419429.Google Scholar
Barwich, A. S. (2019). A critique of olfactory objects. Frontiers in Psychology, 10, 1337.Google Scholar
Bates, L. A., Poole, J. H., & Byrne, R. W. (2008). Elephant cognition. Current Biology, 18(13), R544R546.CrossRefGoogle ScholarPubMed
Baumgartner, H. M., Schulkin, J., & Berridge, K. C. (2021). Activating corticotropin releasing factor (CRF) systems in nucleus accumbens, amygdala, and bed nucleus of stria terminalis: Incentive motivation or aversive motivation? Biological Psychiatry, 89, 11621175.CrossRefGoogle ScholarPubMed
Bechtel, W. (2009). Looking down, around, and up: Mechanistic explanation in psychology. Philosophical Psychology, 22(5), 543564.Google Scholar
Bechtel, W., & Huang, L. (2022). The philosophy of neuroscience. Cambridge University Press.CrossRefGoogle Scholar
Bernard, C. (1974). Lectures on the phenomena of life common to animals and plants (Vol. 2, No. 1). Charles C Thomas Pub.Google Scholar
Berridge, K. C. (2012). From prediction error to incentive salience: Mesolimbic computation of reward motivation. European Journal of Neuroscience, 35(7), 11241143.CrossRefGoogle ScholarPubMed
Berridge, K. C., Flynn, F. W., Schulkin, J., & Grill, H. J. (1984). Sodium depletion enhances salt palatability in rats. Behavioral Neuroscience, 98(4), 652660.CrossRefGoogle ScholarPubMed
Berridge, K. C., Grill, H. J., & Norgren, R. (1981). Relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions. Journal of Comparative and Physiological Psychology, 95(3), 363382.CrossRefGoogle ScholarPubMed
Berridge, K. C., & Schulkin, J. (1989). Palatability shift of a salt-associated incentive during sodium depletion. The Quarterly Journal of Experimental Psychology, 41(2), 121138.Google Scholar
Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews Neuroscience, 14(10), 693707.Google Scholar
Blair-West, J. R., Coghlan, J. P., Denton, D. A. et al. (1968). Physiological, morphological and behavioural adaptation to a sodium deficient environment by wild native Australian and introduced species of animals. Nature, 217(5132), 922928.CrossRefGoogle ScholarPubMed
Blakemore, C., & Campbell, F. W. (1969). On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. The Journal of Physiology, 203(1), 237260.Google Scholar
Boyd, J. E., Lanius, R. A., & McKinnon, M. C. (2018). Mindfulness-based treatments for posttraumatic stress disorder. Journal of Psychiatry & Neuroscience, 43(1), 725.CrossRefGoogle ScholarPubMed
Bradshaw, G. A. (2009). Elephants on the edge. Yale University Press.Google Scholar
Bradshaw, G. A., & Schore, A. N. (2007). How elephants are opening doors: Developmental neuroethology, attachment and social context. Ethology, 113(5), 426436.CrossRefGoogle Scholar
Brentari, D., & Goldin-Meadow, S. (2017). Language emergence. The Annual Review of Linguistics, 3, 363388.Google Scholar
Brezina, V. (2010). Beyond the wiring diagram: Signaling through complex neuromodulator networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1551), 23632374.Google Scholar
Brown, R., Brusse, C., Huebner, B., & Pain, R. (2020). Unification at the cost of realism and precision. Behavioral and Brian Sciences, 43.Google Scholar
Buckner, C. (2018). Empiricism without magic: Transformational abstraction in deep convolutional neural networks. Synthese, 195(12), 53395372.CrossRefGoogle Scholar
Buzsáki, G. (2019). The brain from inside out. Oxford University Press.CrossRefGoogle Scholar
Byrne, R. W., & Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans. Clarendon.Google Scholar
Campbell, F. W., & Maffei, L. (1974). Contrast and spatial frequency. Scientific American, 231(5), 106115.Google Scholar
Cannon, W. B. (1917). Bodily changes in pain, hunger, fear, and rage: An account of recent researches into the function of emotional excitement. D. Appleton.Google Scholar
Cannon, W. B. (1932). The wisdom of the body. Norton, W. W.. Carandini, M., Demb, J. B., Mante, V. et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25(46), 1057710597.Google Scholar
Carter, C. S. (2017). The oxytocin–vasopressin pathway in the context of love and fear. Frontiers in Endocrinology, 8, 356.Google Scholar
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 14841525.Google Scholar
Chattarji, S., Tomar, A., Suvrathan, A., Ghosh, S., & Rahman, M. M. (2015). Neighborhood matters: Divergent patterns of stress-induced plasticity across the brain. Nature Neuroscience, 18(10), 13641375.CrossRefGoogle ScholarPubMed
Chen, F. S., Barth, M., Johnson, SL., Gotlib, I. H., & Johnson, S. C. (2011). Oxytocin receptor (OXTR) polymorphisms and attachment in human infants. Frontiers in Psychology, 2, 200.CrossRefGoogle ScholarPubMed
Chen, F. S., Heinrichs, M., & Johnson, S. C. (2017). Oxytocin and the emergence of individual differences in the social regulation of stress. Social and Personality Psychology Compass, 11(8), e12332.CrossRefGoogle Scholar
Churchland, P. S. (2019). Conscience: The origins of moral intuition. W. W. Norton & Company.Google Scholar
Clutton-Brock, T. (2009). Cooperation between non-kin in animal societies. Nature, 462(7269), 5157.Google Scholar
Corcoran, A. W., & Hohwy, J. (2019). Allostasis, interoception, and the free energy principle: Feeling our way forward. In Tsakiris, M. & de Preester, H. (Eds.), The interoceptive mind: From homeostasis to awareness (pp. 272292). Oxford University Press.Google Scholar
Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs to deprivation. Psychopharmacology, 206(4), 515530.CrossRefGoogle ScholarPubMed
Corlett, P. R., Horga, G., Fletcher, P. C., Alderson-Day, B., Schmack, K., & Powers, A. R. III (2019). Hallucinations and strong priors. Trends in Cognitive Sciences, 23(2), 114127.Google Scholar
Corris, A. (2020). Defining the environment in organism–environment systems. Frontiers in Psychology, 11, 1285.Google Scholar
Cummins, D. D., & Cummins, R. (1999). Biological preparedness and evolutionary explanation. Cognition, 73(3), B37B53.Google Scholar
Dallman, M. F., Strack, A. M., Akana, S. F. et al. (1993). Feast and famine: Critical role of glucocorticoids with insulin in daily energy flow. Frontiers in Neuroendocrinology, 14(4), 303347.Google Scholar
Daniels, D., & Schulkin, J. (2018). Water and salt intake in vertebrates: Endocrine and Behavioral Regulation. In Encyclopaedia of animal behavior (pp. 569579). Academic Press.Google Scholar
Davies-Barton, T., Raja, V., Baggs, E., & Anderson, M. L. (2022). Debt-free intelligence: Ecological information in minds and machines. http://philsci-archive.pitt.edu/20426/.Google Scholar
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 1334.Google Scholar
Dayan, P., & Niv, Y. (2008). Reinforcement learning: The good, the bad and the ugly. Current Opinion in Neurobiology, 18(2), 185196.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G. (2017). The human infant brain: A neural architecture able to learn language. Psychonomic Bulletin & Review, 24(1), 4855.Google Scholar
DeJesus, J. M., Gelman, S. A., Viechnicki, G. B. et al. (2018a). An investigation of maternal food intake and maternal food talk as predictors of child food intake. Appetite, 127, 356363.Google Scholar
DeJesus, J. M., Shutts, K., & Kinzler, K. D. (2018b). Mere social knowledge impacts children’s consumption and categorization of foods. Developmental Science, 21(5), e12627.CrossRefGoogle ScholarPubMed
Dennett, D. C. (1995). Darwin’s dangerous idea. Simon and Schuster.CrossRefGoogle Scholar
Denton, D. A. (1982). Hunger for salt. Springer-Verlag.Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193222.CrossRefGoogle ScholarPubMed
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73(3), 415434.CrossRefGoogle ScholarPubMed
Dunbar, R. (2016). Human evolution: Our brains and behavior. Oxford University Press.Google Scholar
Edwards, T., & Brentari, D. (2020). Feeling phonology: The conventionalization of phonology in protactile communities in the United States. Language, 96(4), 819840.CrossRefGoogle Scholar
Eisenberger, N. I., Moieni, M., Inagaki, T. K., Muscatell, K. A., & Irwin, M. R. (2017). In sickness and in health: The co-regulation of inflammation and social behavior. Neuropsychopharmacology, 42(1), 242253.CrossRefGoogle Scholar
Engel, A., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nature Reviews Neuroscience, 2(10), 704716.Google Scholar
Epstein, A. N. (1982). Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides, 3(3), 493494.Google Scholar
Ewert, J. P. (1984). Behavioral selectivity based on thalamotectal interactions: Ontogenetic and phylogenetic aspects in amphibians. Behavioral and Brain Sciences, 7(3), 337338.Google Scholar
Ewert, J. P. (1997). Neural correlates of key stimulus and releasing mechanism: A case study and two concepts. Trends in Neurosciences, 20(8), 332339.Google Scholar
Ewert, J.-P., Buxbaum-Conradi, H., Dreisvogt, F. et al. (2001). Neural modulation of visuomotor functions underlying prey-catching behaviour in anurans: Perception, attention, motor performance, learning. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 128(3), 417460.Google Scholar
Fam, B. S., Paré, P., Felkl, A. B., et al. (2018). Oxytocin and arginine vasopressin systems in the domestication process. Genetics and Molecular Biology, 41(1 suppl 1), 235242.Google Scholar
Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 147.Google Scholar
Fitzsimons, J. T. (1979). The physiology of thirst and sodium appetite. Monographs of the Physiological Society, 35. Oxford University Press.Google Scholar
Fox, M. E., Figueiredo, A., Menken, M. S., & Lobo, M. K. (2020). Dendritic spine density is increased on nucleus accumbens D2 neurons after chronic social defeat. Scientific Reports, 10(1), 17.Google Scholar
Freud, E., Plaut, D. C., & Behrmann, M. (2016). ‘What’ is happening in the dorsal visual pathway. Trends in Cognitive Sciences, 20(10), 773784.CrossRefGoogle ScholarPubMed
Galef, B. G., & Laland, K. N. (2005). Social learning in animals: Empirical studies and theoretical models. Bioscience, 55(6), 489499.Google Scholar
Gandhi, T., Kalia, A., Ganesh, S., & Sinha, P. (2015). Immediate susceptibility to visual illusions after sight onset. Current Biology, 25(9), R358R359.CrossRefGoogle ScholarPubMed
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4(1), 123124.Google Scholar
Geerling, J. C., & Loewy, A. D. (2008). Central regulation of sodium appetite. Experimental Physiology, 93(2), 177209.Google Scholar
Gennari, G., Marti, S., Palu, M., Fló, A., & Dehaene-Lambertz, G. (2021). Orthogonal neural codes for speech in the infant brain. Proceedings of the National Academy of Sciences, 118(31), e2020410118.Google Scholar
Ghosh, D. D., Lee, D., Jin, X., Horvitz, H. R., & Nitabach, M. N. (2021). C. elegans discriminates colors to guide foraging. Science, 371(6533), 10591063.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1979). The ecological approach to visual perception. Psychology Press.Google Scholar
Giudice, N. A. (2018). Navigating without vision: Principles of blind spatial cognition. In Montello, D. R. (Ed.), Handbook of behavioral and cognitive geography (pp. 260289). Edward Elgar Publishing.Google Scholar
Goldberg, M. E., & Wurtz, R. H. (1972). Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. Journal of Neurophysiology, 35(4), 560574.Google Scholar
Goldin-Meadow, S. (2005). Hearing gesture. Harvard University Press.Google Scholar
Goodale, M. A. (2011). Transforming vision into action. Vision Research, 51(13), 15671587.Google Scholar
Goodale, M. A., & Humphrey, G. K. (1998). The objects of action and perception. Cognition, 67(1–2), 181207.CrossRefGoogle ScholarPubMed
Gopnik, A., O’Grady, S., Lucas, C. G. et al. (2017). Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. Proceedings of the National Academy of Sciences, 114(30), 78927899.CrossRefGoogle ScholarPubMed
Grossmann, T., Missana, M., & Krol, K. M. (2018). The neurodevelopmental precursors of altruistic behavior in infancy. PLoS Biology, 16(9), e2005281.Google Scholar
Guillery, R. W., & Sherman, S. M. (2002). Thalamic relay functions and their role in corticocortical communication: Generalizations from the visual system. Neuron, 33(2), 163175.CrossRefGoogle ScholarPubMed
Gunnar, M. R. (2017). Social buffering of stress in development: A career perspective. Perspectives on Psychological Science, 12(3), 355373.CrossRefGoogle ScholarPubMed
Gunnar, M. R., Fisher, P. A. ,& The Early Experience, Stress, and Prevention Network. (2006). Bringing basic research on early experience and stress neurobiology to bear on preventative interventions for neglected and maltreated children. Development and Psychopathology, 18(3), 651677.CrossRefGoogle ScholarPubMed
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.CrossRefGoogle ScholarPubMed
Gweon, H. (2021). Inferential social learning: Cognitive foundations of human social learning and teaching. Trends in Cognitive Sciences, 25(10), 896910.Google Scholar
Hackel, L. M., Coppin, G., Wohl, M. J., & Van Bavel, J. J. (2018). From groups to grits. Journal of Experimental Social Psychology, 74, 270280.Google Scholar
Hamlin, J. K. (2013). Moral judgment and action in preverbal infants and toddlers. Current Directions in Psychological Science, 22(3), 186193.Google Scholar
Hare, B. (2017). Survival of the friendliest. Annual Review of Psychology, 68, 155186.CrossRefGoogle ScholarPubMed
Hare, B., & Tomasello, M. (2005). Human-like social skills in dogs? Trends in Cognitive Science, 9(9), 439444.Google Scholar
Hare, B., Wobber, V., & Wrangham, R. (2012). The self-domestication hypothesis: Evolution of bonobo psychology is due to selection against aggression. Animal Behaviour, 83(3), 573585.CrossRefGoogle Scholar
Hayden, B. Y., & Niv, Y. (2021). The case against economic values in the orbitofrontal cortex (or anywhere else in the brain). Behavioral Neuroscience, 135(2), 192201.Google Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54(12), 13891398.Google Scholar
Herbert, J., & Schulkin, J. (2002). Neurochemical coding of adaptive responses in the limbic system. In Pfaff, D., Arnold, A., Etgen, A., Fahrbach, S., & Rubin, R. (Eds.), Hormones, Brain and Behavior (pp. 659689). Academic Press.Google Scholar
Heyes, C. (2019). What is cognition? Current Biology, 29(13), R611.Google Scholar
Heyes, C., Chater, N., & Dwyer, D. M. (2020). Sinking in: The peripheral Baldwinisation of human cognition. Trends in Cognitive Sciences, 24(11), 884899.CrossRefGoogle ScholarPubMed
House, E. L., & Pansky, B. (1960). A functional approach to neuroanatomy. McGraw-Hill.Google Scholar
Howell, W. H. (1916). A textbook of physiology for medical students and physicians. W.B. Saunders Co.Google Scholar
Hrdy, S. B. (2011). Mothers and others. Natural History, 110(4), 5062.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of Physiology, 148(3), 574591.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106154.Google Scholar
Huebner, B. (2016) Implicit bias, reinforcement learning, and scaffolded moral cognition. In Brownstein, M. & Saul, J. (Eds.), Implicit bias and philosophy: Vol. 1 (pp. 47–79). Oxford University Press.Google Scholar
Huebner, B. (2019). Picturing, signifying, and attending. Belgrade Philosophical Annual, (31), 740.Google Scholar
Hyde, P. S., & Knudsen, E. I. (2002). The optic tectum controls visually guided adaptive plasticity in the owl’s auditory space map. Nature, 415(6867), 7376.CrossRefGoogle ScholarPubMed
Insel, T. R. (1992). Oxytocin—A neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 17(1), 335.Google Scholar
Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10–12), 14891506.Google Scholar
James, W. (1890). The principles of psychology (2 Vols.). Macmillan.Google Scholar
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: A cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 21092128.Google Scholar
Keijzer, F. (2013). The Sphex story: How the cognitive sciences kept repeating an old and questionable anecdote. Philosophical Psychology, 26(4), 502519.CrossRefGoogle Scholar
Kishida, K. T., Saez, I., Lohrenz, T. et al. (2016). Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proceedings of the National Academy of Sciences, 113(1), 200205.CrossRefGoogle ScholarPubMed
Koch, S. B., van Zuiden, M., Nawijn, L. et al. (2016). Intranasal oxytocin administration dampens amygdala reactivity towards emotional faces in male and female PTSD patients. Neuropsychopharmacology, 41(6), 14951504.Google Scholar
Krauzlis, R. J., Bollimunta, A., Arcizet, F., & Wang, L. (2014). Attention as an effect not a cause. Trends in Cognitive Sciences, 18(9), 457464.Google Scholar
Krauzlis, R. J., Lovejoy, L. P., & Zénon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165182.Google Scholar
Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217230.Google Scholar
Krol, K. M., Moulder, R. G., Lillard, T. S., Grossmann, T., & Connelly, J. J. (2019a). Epigenetic dynamics in infancy and the impact of maternal engagement. Science Advances, 5(10), eaay0680.Google Scholar
Krol, K. M., Puglia, M. H., Morris, J. P., Connelly, J. J., & Grossmann, T. (2019b). Epigenetic modification of the oxytocin receptor gene is associated with emotion processing in the infant brain. Developmental Cognitive Neuroscience, 37, 100648.Google Scholar
Krosch, A. R., & Amodio, D. M. (2014) Economic scarcity alters the perception of race. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 90799084.Google Scholar
Krubitzer, L. (2007). The magnificent compromise. Neuron, 56(2), 201208.Google Scholar
Kryklywy, J. H., Ehlers, M. R., Anderson, A. K., & Todd, R. M. (2020). From architecture to evolution: Multisensory evidence of decentralized emotion. Trends in Cognitive Sciences, 24(11), 916929.Google Scholar
Laland, K. N. (1993). Animal social learning. Perspectives in Ethology, 10, 249277.Google Scholar
LeDoux, J. E., & Brown, R. (2017). A higher-order theory of emotional consciousness. Proceedings of the National Academy of Sciences, 114(10), E2016E2025.Google Scholar
Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., & Pitts, W. H. (1959). What the frog’s eye tells the frog’s brain. Proceedings of the IRE, 47(11), 19401951.CrossRefGoogle Scholar
Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421431.Google Scholar
Liljeholm, M., & O’Doherty, J. P. (2012). Contributions of the striatum to learning, motivation, and performance: An associative account. Trends in Cognitive Sciences, 16(9), 467475.Google Scholar
Maley, C. J. (2021). The physicality of representation. Synthese, 199(5–6), 1472514750.Google Scholar
Mandelbaum, E. (2019). Troubles with Bayesianism. Mind & Language, 34(2), 141157.Google Scholar
Marder, E. (2012). Neuromodulation of neuronal circuits. Neuron, 76(1), 111.Google Scholar
Marler, P. (2000). Origins of music and speech: Insights from animals. In Wallin, N. L., Merker, B., & Brown, S. (Eds.), The origins of music (pp. 31–48). MIT Press.Google Scholar
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. Henry Holt.Google Scholar
Marsh, A. A. (2016). Neural, cognitive, and evolutionary foundations of human altruism. Wiley Interdisciplinary Reviews: Cognitive Science, 7(1), 5971.Google Scholar
Marsh, A. A., Henry, H. Y., Pine, D. S. et al. (2012). The influence of oxytocin administration on responses to infant faces and potential moderation by OXTR genotype. Psychopharmacology, 224(4), 469476.Google Scholar
Marsh, N., Marsh, A. A., Lee, M. R., & Hurlemann, R. (2021). Oxytocin and the neurobiology of prosocial behavior. The Neuroscientist, 27(6), 604619.Google Scholar
Martin, A. E. (2020). A compositional neural architecture for language. Journal of Cognitive Neuroscience, 32(8), 14071427.Google Scholar
Mauss, A. S., Vlasits, A., Borst, A., & Feller, M. (2017). Visual circuits for direction selectivity. Annual Review of Neuroscience, 40, 211230.Google Scholar
Mayberry, R. I., & Kluender, R. (2018). Rethinking the critical period for language: New insights into an old question from American Sign Language. Bilingualism: Language and Cognition, 21(5), 886905.Google Scholar
McComb, K., Shannon, G., Sayialel, K. N., & Moss, C. (2014). Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. Proceedings of the National Academy of Sciences, 111(14), 54335438.Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease. Annals of the New York Academy of Sciences, 840(1), 3344.Google Scholar
McEwen, B. S. (2004) Protective and damaging effects of the mediators of stress and adaptation. In Schulkin, J. (ed.), Allostasis, homeostasis, and the costs of physiological adaptation (pp. 6598). Cambridge University Press.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation. Physiological Reviews, 87(3), 873901.Google Scholar
McEwen, B. S. (2017). Allostasis and the epigenetics of brain and body health over the life course. JAMA Psychiatry, 74(6), 551552.Google Scholar
McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress. Annals of the New York Academy of Sciences, 896(1), 3047.Google Scholar
Merabet, L. B., Hamilton, R., Schlaug, G. et al. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLoS One, 3(8), e3046.Google Scholar
Milner, A. D. (2017). How do the two visual streams interact with each other? Experimental Brain Research, 235(5), 12971308.Google Scholar
Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774785.Google Scholar
Montague, P. R. (2007). Your brain is (almost) perfect: How we make decisions. Penguin.Google Scholar
Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 19361947.Google Scholar
Mulroney, S. E., Woda, C. B., Halaihel, N. et al. (2004). Central control of renal sodium-phosphate (NaPi-2) transporters. American Journal of Physiology-Renal Physiology, 286(4), F647F652.Google Scholar
Nagasawa, M., Mitsui, S., En, S. et al. (2015). Social evolution. Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science, 348(6232), 333336.Google Scholar
Newport, E. L. (1988). Constraints on learning and their role in language acquisition. Language Sciences, 10(1), 147172.Google Scholar
Newport, E. L. (2016). Statistical language learning: Computational, maturational, and linguistic constraints. Language and Cognition, 8(3), 447461.Google Scholar
Newport, E. L. (2020). Children and adults as language learners: Rules, variation, and maturational change. Topics in Cognitive Science, 12(1), 153169.Google Scholar
Norman, L J., & Thaler, L. (2019). Retinotopic-like maps of spatial sound in primary ‘visual’ cortex of blind human echolocators. Proceedings of the Royal Society B, 286(1912), 20191910.Google Scholar
Odenbaugh, J. (2003). Complex systems, trade-offs, and theoretical population biology: Richard Levin’s “strategy of model building in population biology” revisited. Philosophy of Science, 70(5), 14961507.Google Scholar
O’Keeffe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Clarendon Press.Google Scholar
Op de Beeck, H. P., Pillet, I., & Ritchie, J. B. (2019). Factors determining where category-selective areas emerge in visual cortex. Trends in Cognitive Sciences, 23(9), 784797.Google Scholar
O’Sullivan, S. (2017). Is it all in your head? True stories of imaginary illness. Other Press.Google Scholar
Pavlov, I. P. (1902). The work of the digestive glands: Lectures by Professor JP Pavlow. Tr. Into English by WH Thompson. C. Griffin.Google Scholar
Pavlov, I. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Oxford University PressGoogle Scholar
Pessoa, L. (2010). Emotion and cognition and the amygdala: From “what is it?” to “what’s to be done?Neuropsychologia, 48(12), 34163429.Google Scholar
Platt, M. L., & Pearson, J. M. (2016). Dopamine: Context and counterfactuals.Proceedings of the National Academy of Sciences of the United States of America, 113(1), 2223.Google Scholar
Pollak, T. A., & Corlett, P. R. (2020). Blindness, psychosis, and the visual construction of the world. Schizophrenia Bulletin, 46(6), 14181425.Google Scholar
Power, M. L., & Schulkin, J. (2008). Anticipatory physiological regulation in feeding biology. Appetite, 50(2–3), 194206.Google Scholar
Power, M. L., & Schulkin, J. (2017). Milk: The biology of lactation. JHU Press.Google Scholar
Powers, A. R. III, Kelley, M. S., & Corlett, P. R. (2017). Varieties of voice-hearing: Psychics and the psychosis continuum. Schizophrenia Bulletin, 43(1), 8498.Google Scholar
Powers, S. I., Pietromonaco, P. R., Gunlicks, M., & Sayer, A. (2006). Dating couples’ attachment styles and patterns of cortisol reactivity and recovery in response to a relationship conflict. Journal of Personality and Social Psychology, 90(4), 613628.Google Scholar
Powley, T. L. (1977). The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis. Psychological Review, 84(1), 89126.Google Scholar
Purushothaman, G., Marion, R., Li, K., & Casagrande, V. A. (2012). Gating and control of primary visual cortex by pulvinar. Nature Neuroscience, 15(6), 905912.Google Scholar
Prum, R. O. (2017). The evolution of beauty. Anchor.Google Scholar
Quintana, D. S., & Guastella, A. J. (2020). An allostatic theory of oxytocin. Trends in Cognitive Sciences, 24(7), 515528.Google Scholar
Raglan, G. B., Schmidt, L. A., & Schulkin, J. (2017). The role of glucocorticoids and corticotropin-releasing hormone regulation on anxiety symptoms and response to treatment. Endocrine Connections, 6(2), R1R7.Google Scholar
Railton, P. (2017). At the core of our capacity to act for a reason: The affective system and evaluative model-based learning and control. Emotion Review, 9(4), 335342.Google Scholar
Rakoczy, H., & Schmidt, M. F. (2013). The early ontogeny of social norms. Child Development Perspectives, 7(1), 1721.Google Scholar
Ramón y Cajal, S. (1899). Comparative study of the sensory areas of the human cortex. Clark University.Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 44364441.Google Scholar
Reich, L., Szwed, M., Cohen, L., & Amedi, A. (2011). A ventral visual stream reading center independent of visual experience. Current Biology, 21(5), 363368.Google Scholar
Rescorla, R. A. (1980). Simultaneous and successive associations in sensory preconditioning. Journal of Experimental Psychology: Animal Behavior Processes, 6(3), 207216.Google Scholar
Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychologist, 43(3), 151160.Google Scholar
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current research and theory (pp. 6499). Appleton Century Crofts.Google Scholar
Richter, C. P. (1943). Total self-regulatory functions in animals and human beings. Harvey Lecture Series, 38, 63–103.Google Scholar
Richter, C. P. (1953). Behavior cycles in man and animals. Science, 117(3044), 470.Google Scholar
Richter, C. P. (1956). Salt appetite of mammals: Its dependence on instinct and metabolism. L’instinct dans Ie comportement des animaux et de l’homme. Paris, 577–629.Google Scholar
Ritzel, K., & Gallo, T. (2020). Behavior change in urban mammals. Frontiers in Ecology and Evolution, 8, 393.Google Scholar
Rosen, J. B., & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review, 105(2), 325350.Google Scholar
Rosen, J. B., & Schulkin, J. (2004). Adaptive fear, allostasis, and the pathology of anxiety and depression. In Schulkin, J. (Ed.), Allostasis, homeostasis, and the costs of physiological adaptation (pp. 164227). Cambridge University Press.Google Scholar
Rozin, P. (1990). Acquisition of stable food preferences. Nutrition Reviews, 48(2), 106113.Google Scholar
Rozin, P., & Kalat, J. W. (1971). Specific hungers and poison avoidance as adaptive specializations of learning. Psychological Review, 78(6), 459486.Google Scholar
Rozin, P. N., & Schulkin, J. (1990). Food selection. In Stricker, E. M. (Ed.), Neurobiology of food and fluid intake (pp. 297328). Plenum Press.Google Scholar
Sapolsky, R. (1996). Why stress is bad for your brain. Science, 273(5276), 749750.Google Scholar
Sapolsky, R. (2005). The influence of social hierarchy on primate health. Science, 308(5722), 648652.Google Scholar
Sapolsky, R., Romero, L. M., & Munck, A. U. (2000). How do glucocorticosteroids influence stress responses? Endocrinology Review, 21(1), 5589.Google Scholar
Schulkin, J. (1991). Sodium hunger: The search for a salty taste. Cambridge University Press.Google Scholar
Schulkin, J. (2004). Allostasis, homeostasis, and the costs of physiological adaptation. Cambridge University Press.Google Scholar
Schulkin, J. (2006). Angst and the amygdala. Dialogues in Clinical Neuroscience, 8(4), 407416.Google Scholar
Schulkin, J. (2011). Adaptation and well-being. Cambridge University Press.Google Scholar
Schulkin, J. (2015). Pragmatism and the search for coherence in neuroscience. Springer.Google Scholar
Schulkin, J., McEwen, B. S., & Gold, P. W. (1994). Allostasis, amygdala, and anticipatory angst. Neuroscience & Biobehavioral Reviews, 18(3), 385396.Google Scholar
Schulkin, J., & Sterling, P. (2019). Allostasis: A brain-centered, predictive mode of physiological regulation. Trends in Neurosciences, 42(10), 740752.Google Scholar
Schulkin, J., Thompson, B. L., & Rosen, J. B. (2003). Demythologizing the emotions: Adaptation, cognition, and visceral representations of emotion in the nervous system. Brain and Cognition, 52(1), 1523.Google Scholar
Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions 6(24). https://bit.ly/3s9fKEy.Google Scholar
Selfridge, O. (1959). Pandemonium: A paradigm for learning. Paper presented at Proceedings of the Symposium on Mechanisation of Thought Processes, National Physical Laboratory, Teddington, November 1958 (Vol. 1, pp. 513–526). HMSO.Google Scholar
Seligman, M. E. (1971). Phobias and preparedness. Behavior Therapy, 2(3), 307320.Google Scholar
Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 64246429.Google Scholar
Seth, A. (2021). Being you: A new science of consciousness. Penguin.Google Scholar
Seth, A. K., & Tsakiris, M. (2018). Being a beast machine: The somatic basis of selfhood. Trends in Cognitive Sciences, 22(11), 969981.CrossRefGoogle ScholarPubMed
Sharpe, M. J., Batchelor, H. M., Mueller, L. E. et al. (2020). Dopamine transients do not act as model-free prediction errors during associative learning. Nature Communications, 11(1), 110.Google Scholar
Shepard, R. N. (1984). Ecological constraints on internal representation. Psychological Review, 91(4), 414447.Google Scholar
Shilton, D., Breski, M., Dor, D., & Jablonka, E. (2020). Human social evolution: Self-domestication or self-control? Frontiers in Psychology, 11, 134.Google Scholar
Shine, J. M, O’Callaghan, C., Wainstein, G. et al. (2022). Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain, 145(9), 2967–2981.Google Scholar
Shutts, K., Kinzler, K. D., & DeJesus, J. M. (2013). Understanding infants’ and children’s social learning about foods: Previous research and new prospects. Developmental Psychology, 49(3), 419425.Google Scholar
Silk, J. B. (2007). The adaptive value of sociality in mammalian groups. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 539559.Google Scholar
Silk, J., Cheney, D., & Seyfarth, R. (2013). A practical guide to the study of social relationships. Evolutionary Anthropology: Issues, News, and Reviews, 22(5), 213225.Google Scholar
Silver, M., & Sabini, J. (2012). Sincerity: Feelings and constructions in making a self. In Gergen, K. J. & Davis, K. E. (Eds.), The social construction of the person (pp. 191201). Springer.Google Scholar
Starling, E. H. (1905). The Croonian lectures. Lancet, 26, 339341.Google Scholar
Sterelny, K. (2021). The Pleistocene social contract: Culture and cooperation in human evolution. Oxford University Press.Google Scholar
Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In Fisher, S. & Reason, J. (Eds.), Handbook of life stress, cognition and health (pp. 629–649). John Wiley & Sons.Google Scholar
Sterling, P., & Laughlin, S. (2015). Principles of neural design. MIT Press.Google Scholar
Sterzer, P., Adams, R. A., Fletcher, P. et al. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84(9), 634643.Google Scholar
Stokes, D., Matthen, M., & Biggs, S. (Eds.) (2015). Perception and its modalities. Oxford University Press.Google Scholar
Striem-Amit, E., Ovadia-Caro, S., Caramazza, A. et al. (2015). Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain, 138(6), 16791695.Google Scholar
Sykes, R. W. (2020). Kindred: Neanderthal life, love, death and art.Bloomsbury.Google Scholar
Swanson, L. W., & Petrovich, G. D. (1998). What is the amygdala? Trends in Neurosciences, 21(8), 323331.Google Scholar
Takagi, S., Saito, A., Arahori, M. et al. (2022). Cats learn the names of their friend cats in their daily lives. Scientific Reports, 12(1), 6155.Google Scholar
Talmi, D., Ziegler, M., Hawksworth, J. et al. (2013) Emotional stimuli exert parallel effects on attention and memory. Cognition & Emotion, 27(3), 530538.Google Scholar
Tamietto, M., Cauda, F., Corazzini, L. L. et al. (2010). Collicular vision guides nonconscious behavior. Journal of Cognitive Neuroscience, 22(5), 888902.Google Scholar
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 12791285.Google Scholar
Theriault, J., Young, L., & Barrett, L. F. (2021). The sense of should: A biologically-based model of social pressure. Physics of Life Reviews, 36, 100136.Google Scholar
Thompson, E. (1995). Colour vision, evolution, and perceptual content. Synthese, 104(1), 132.Google Scholar
Tinbergen, N. (1951). The study of instinct. Oxford University Press.Google Scholar
Tinbergen, N. (1953). Social behaviour in animals. Psychology Press.Google Scholar
Todd, R. M., & Manaligod, M. G. (2018). Implicit guidance of attention: The priority state space framework. Cortex, 102, 121138.Google Scholar
Tomasello, M. (2009). The cultural origins of human cognition. Harvard University Press.Google Scholar
Tomasello, M, Melis, A. P., Tennie, C., Wyman, E., & Herrmann, E. (2012). Two key steps in the evolution of cooperation. Current Anthropology, 53(6), 673692.Google Scholar
Tschantz, A., Barca, L., Maisto, D. et al. (2021). Simulating homeostatic, allostatic and goal-directed forms of interoceptive control using Active Inference. Biological Psychology, 169, 108266.Google Scholar
Ungerleider, L. G., & Pessoa, L. (2018). What and where pathways. Scholarpedia, 3(11), 5342.Google Scholar
Vallorani, A., Fu, X., Morales, S. et al. (2021). Variable- and person-centered approaches to affect-biased attention in infancy reveal unique relations with infant negative affect and maternal anxiety. Scientific Reports, 11(1), 114.CrossRefGoogle ScholarPubMed
Vyas, A., Mitra, R., Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22(15), 68106818.Google Scholar
Wang, Y. C., Bianciardi, M., Chanes, L., & Satpute, A. B. (2020). Ultra-high field fMRI of human superior colliculi activity during affective visual processing. Scientific Reports, 10(1), 17.Google Scholar
Warneken, F., & Tomasello, M. (2006). Altruistic helping in human infants and young chimpanzees. Science, 311(5765), 13011303.Google Scholar
Warneken, F., Hare, B., Melis, A. P., Hanus, D., & Tomasello, M. (2007). Spontaneous altruism by chimpanzees and young children. PLoS Biology, 5(7), e184.Google Scholar
Waterhouse, B. D., & Navarra, R. L. (2019). The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Research, 1709, 115.Google Scholar
Wilcoxon, H. C., Dragoin, W. B., & Kral, P. A. (1971). Illness-induced aversions in rat and quail. Science, 171(3973), 826828.Google Scholar
Wilkins, A. S., Wrangham, R. W., & Fitch, W. T. (2014). The “domestication syndrome” in mammals. Genetics, 197(3), 795808.Google Scholar
Wittig, R. M., Crockford, C., Lehman, J. et al. (2008). Focused grooming networks and stress alleviation in wild female baboons. Hormones & Behavior, 54(1), 170177.Google Scholar
Wolf, G. (1969). Innate mechanisms for regulation of sodium intake. Olfaction and Taste, 3, 548553.Google Scholar
Woods, S. C., Vasselli, J. R., Kaestner, E. et al. (1977). Conditioned insulin secretion and meal feeding in rats. Journal of Comparative and Physiological Psychology, 91(1), 128133.Google Scholar
Wrangham, R. (2019). The goodness paradox. Pantheon.Google Scholar
Wurtz, R. H. (2009). Recounting the impact of Hubel and Wiesel. The Journal of Physiology, 587(12), 28172823.Google Scholar
Yang, C. (2016). The price of linguistic productivity: How children learn to break the rules of language. MIT Press.Google Scholar
Yehuda, R. (2002). Post-traumatic stress disorder. New England Journal of Medicine, 346(2), 108114.Google Scholar
Yehuda, R., & LeDoux, J. (2007). Response variation following trauma: A translational neuroscience approach to understanding PTSD. Neuron, 56(1), 1932.Google Scholar
Zhaoping, L. (2016). From the optic tectum to the primary visual cortex: Migration through evolution of the saliency map for exogenous attentional guidance. Current Opinion in Neurobiology, 40, 94102.Google Scholar
Zhuang, C., Yan, S., Nayebi, A. et al. (2021). Unsupervised neural network models of the ventral visual stream. Proceedings of the National Academy of Sciences, 118(3), e2014196118.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Biological Cognition
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Biological Cognition
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Biological Cognition
Available formats
×