Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.219 Render date: 2021-10-21T09:09:06.524Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems

Published online by Cambridge University Press:  01 August 2003

Eitan Tadmor
Affiliation:
Department of Mathematics, Center for Scientific Computation and Mathematical Modeling (CSCAMM) Institute for Physical Science & Technology (IPST), University of Maryland, College Park, MD 20742, USA E-mail: tadmor@cscamm.umd.edu

Abstract

We study the entropy stability of difference approximations to nonlinear hyperbolic conservation laws, and related time-dependent problems governed by additional dissipative and dispersive forcing terms. We employ a comparison principle as the main tool for entropy stability analysis, comparing the entropy production of a given scheme against properly chosen entropy-conservative schemes.

To this end, we introduce general families of entropy-conservative schemes, interesting in their own right. The present treatment of such schemes extends our earlier recipe for construction of entropy-conservative schemes, introduced in Tadmor (1987b). The new families of entropy-conservative schemes offer two main advantages, namely, (i) their numerical fluxes admit an explicit, closed-form expression, and (ii) by a proper choice of their path of integration in phase space, we can distinguish between different families of waves within the same computational cell; in particular, entropy stability can be enforced on rarefactions while keeping the sharp resolution of shock discontinuities.

A comparison with the numerical viscosities associated with entropy-conservative schemes provides a useful framework for the construction and analysis of entropy-stable schemes. We employ this framework for a detailed study of entropy stability for a host of first- and second-order accurate schemes. The comparison approach yields a precise characterization of the entropy stability of semi-discrete schemes for both scalar problems and systems of equations.

We extend these results to fully discrete schemes. Here, spatial entropy dissipation is balanced by the entropy production due to time discretization with a suffciently small time-step, satisfying a suitable CFL condition. Finally, we revisit the question of entropy stability for fully discrete schemes using a different approach based on homotopy arguments. We prove entropy stability under optimal CFL conditions.

Type
Research Article
Copyright
© Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
213
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *