Skip to main content
    • Aa
    • Aa

Numerical solution of highly oscillatory ordinary differential equations

  • Linda R. Petzold (a1), Laurent O. Jay (a2) and Jeng Yen (a3)

One of the most difficult problems in the numerical solution of ordinary differential equations (ODEs) and in differential-algebraic equations (DAEs) is the development of methods for dealing with highly oscillatory systems. These types of systems arise, for example, in vehicle simulation when modelling the suspension system or tyres, in models for contact and impact, in flexible body simulation from vibrations in the structural model, in molecular dynamics, in orbital mechanics, and in circuit simulation. Standard numerical methods can require a huge number of time-steps to track the oscillations, and even with small stepsizes they can alter the dynamics, unless the method is chosen very carefully.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. P. Agrawal (1989), Nonlinear Fiber Optics, Academic Press.

H. C. Andersen (1983), ‘Rattle: a velocity version of the Shake algorithm for molecular dynamics calculations’, J. Comput. Phys. 52, 2434.

T. J. Aprille Jr and T. N. Trick (1972), ‘Steady-state analysis of nonlinear circuits with periodic inputs’, Proc. IEEE 60, 108114.

E. Barth , K. Kuczera , B. Leimkuhler and R. D. Skeel (1995), ‘Algorithms for constrained molecular dynamics’, J. Comp. Chem. 16, 11921209.

D. Beeman (1976), ‘Some multistep methods for use in molecular dynamics calculations’, J. Comput. Phys. 20, 130139.

D. G. Bettis (1970), ‘Numerical integration of products of Fourier and ordinary polynomials’, Numer. Math. 14, 421434.

J. J. Biesiadecki and R. D. Skeel (1993), ‘Dangers of multiple-time-step methods’, J. Comput. Phys. 109, 318328.

J. A. Board Jr, L. V. Kalé , K. Schulten , R. D. Skeel and T. Schlick (1994), ‘Modeling biomolecules: larger scales, longer durations’, IEEE Comp. Sci. Eng. 1, 1930.

K. E. Brenan , S. L. Campbell and L. R. Petzold (1995), Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn, SIAM.

L. Brusa and L. Nigro (1980), ‘A one-step method for direct integration of structural dynamics equations’, Internat. J. Numer. Methods Engrg. 15, 685699.

A. Cardona and M. Géradin (1989), ‘Time integration of the equations of motion in mechanism analysis’, Comput. & Structures 33, 801820.

J. R. Cash (1981), ‘High order P-stable formulæ for the numerical integration of periodic initial value problems’, Numer. Math. 37, 355370.

M. M. Chawla (1985), ‘On the order and attainable intervals of periodicity of explicit Nyström methods for y″ = f(x, y)’, SIAM J. Numer. Anal. 22, 127131.

M. M. Chawla and P. S. Rao (1985), ‘High-accuracy P-stable methods for y″ = f(x, y)’, IMA J. Numer. Anal. 5, 215220.

M. M. Chawla and S. R. Sharma (1981 a), ‘Families of fifth order Nyström methods for y″ = f(x, y) and intervals of periodicity’, Computing 26, 247256.

M. M. Chawla and S. R. Sharma (1981 b), ‘Intervals of periodicity and absolute stability of explicit Nyström methods for y″ = f(x, y)’, BIT 21, 455464.

H. C. Chen and R. L. Taylor (1989), ‘Using Lanczos vectors and Ritz vectors for computing dynamic responses’, Eng. Comput. 6, 151157.

J. Chung and G. M. Hulbert (1993), ‘A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method’, ASME J. Appl. Mech. 93-APM-20.

G. J. Cooper (1987), ‘Stability of Runge–Kutta methods for trajectory problems’, IMA J. Numer. Anal. 7, 113.

G. Dahlquist (1963), ‘A special stability problem for linear multistep methods’, BIT 3, 2743.

H. De Meyer , J. Vanthournout and G. Vanden Berghe (1990), ‘On a new type of mixed interpolation’, J. Comput. Appl. Math. 30, 5569.

N. Fenichel (1979), ‘Geometric singular perturbation theory for ordinary differential equations’, J. Diff. Eq. 31, 5398.

M. Fixman (1974), ‘Classical statistical mechanics of constraints: a theorem and application to polymers’, Proc. Nat. Acad. Sci. 71, 30505053.

R. W. Freund , G. H. Golub and N. M. Nachtigal (1992), Iterative solution of linear systems, in Acta Numerica, Vol. 1, Cambridge University Press, pp. 57100.

R. A. Friesner , L. Tuckerman , B. Dornblaser and T. Russo (1989), ‘A method for exponential propagation of large systems of stiff nonlinear differential equations’, J. Sci. Comp. 4, 327–254.

C. Führer and B. J. Leimkuhler (1991), ‘Numerical solution of differential-algebraic equations for constrained mechanical motion’, Numer. Math. 59, 5569.

E. Gallopoulos and Y. Saad (1992), ‘Efficient solution of parabolic equations by Krylov approximation methods’, SIAM J. Sci. Statist. Comput. 13, 12361264.

W. Gautschi (1961), ‘Numerical integration of ordinary differential equations based on trigonometric polynomials’, Numer. Math. 3, 381397.

C. W. Gear and D. R. Wells (1984), ‘Multirate linear multistep methods’, BIT 24, 484502.

I. Gjaja and D. D. Holm (1996), ‘Self-consistent wave-mean flow interaction dynamics and its Hamiltonian formulation for a rotating stratified incompressible fluid’, Physica D. To appear.

I. Gladwell and R. M. Thomas (1983), ‘Damping and phase analysis for some methods for solving second-order ordinary differential equations’, Int. J. Numer. Meth. Eng. 19, 495503.

G. H. Golub and V. Pereyra (1973), ‘The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate’, SIAM J. Numer. Anal. 10, 413432.

H. Grubmüller , H. Heller , A. Windemuth and K. Schulten (1991), ‘Generalized Verlet algorithm for efficient dynamics simulations with long-range interactions’, Mol. Simul. 6, 121142.

M. Günther and P. Rentrop (1993 a), ‘Multirate ROW-methods and latency of electric circuits’, Appl. Numer. Math. 13, 83102.

E. Hairer (1979), ‘Unconditionally stable methods for second order differential equations’, Numer. Math. 32, 373379.

E. Hairer and C. Lubich (1997), ‘The life-span of backward error analysis for numerical integrators’, Numer. Math. To appear.

E. Hairer and G. Wanner (1996), Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Vol. 14 of Comput. Math., 2nd revised edn, Springer, Berlin.

J. Hersch (1958), ‘Contribution à la méthode aux différences’, ZAMP 9a(2), 129180.

H. H. Hilber , T. J. R. Hughes and R. L. Taylor (1977), ‘Improved numerical dissipation for time integration algorithms in structural dynamics’, Earthquake Engineering and Structural Dynamics 5, 283292.

C. Hoff and P. J. Pahl (1988), ‘Development of an implicit method with numerical dissipation from a generalized single-step algorithm for structural dynamics’, Comput. Meth. Appl. Mech. Eng. 67, 367385.

L. O. Jay (1996), ‘Symplectic partitioned Runge–Kutta methods for constrained Hamiltonian systems’, SIAM J. Numer. Anal. 33, 368387.

J. Kevorkian and J. D. Cole (1981), Perturbation Methods in Applied Mathematics, Springer, New York.

U. Kirchgraber (1982), ‘A numerical scheme for problems in nonlinear oscillations’, Mech. Res. Comm. 9, 411417.

N. Kopell (1985), ‘Invariant manifolds and the initialization problem for some atmospheric equations’, Physica D 14, 203215.

K. Kundert , J. White and A. Sangiovanni-Vincentelli (1988 b), A mixed frequency-time approach for finding the steady-state solution of clocked analog circuits, in Proc. of IEEE 1988 Custom Integrated Circuits Conf.

J. D. Lambert and I. A. Watson (1976), ‘Symmetric multistep methods for periodic initial value problems’, J. Inst. Math. Appl. 18, 189202.

C. Lanczos (1950), ‘An iteration method for the solution of the eigenvalue problem of linear differential and integral operators’, J. Res. Nat. Bur. Standards 45, 255281.

B. Leimkuhler , S. Reich and R. D. Skeel (1995), Integration methods for molecular dynamics, in Mathematical Approaches to Biomolecular Structure and Dynamics (J. Mesirov , K. Schulten and D. W. Sumners , eds), Vol. 82 of IMA Volumes in Mathematics and its Applications, Springer, New York, pp. 161187.

W. Liniger and R. A. Willoughby (1970), ‘Efficient integration methods for stiff systems of ordinary differential equations’, SIAM J. Numer. Anal. 7, 4766.

C. Lubich (1993), ‘Integration of stiff mechanical systems by Runge–Kutta methods’, ZAMP 44, 10221053.

D. Mace and L. H. Thomas (1960), ‘An extrapolation method for stepping the calculations of the orbit of an artificial satellite several revolutions ahead at a time’, Astronomical Journal.

M. Mandziuk and T. Schlick (1995), ‘Resonance in the dynamics of chemical systems simulated by the implicit-midpoint scheme’, Chem. Phys. Lett. 237, 525535.

B. Neta and C. H. Ford (1984), ‘Families of methods for ordinary differential equations based on trigonometric polynomials’, J. Comput. Appl. Math. 10, 3338.

S. Nosé (1984), ‘A unified formulation of the constant temperature molecular dynamics methods’, J. Chem. Phys. 81, 511519.

B. Nour-Omid and R. W. Clough (1984), ‘Dynamic analysis of structures using Lanczos coordinates’, Earthquake Engineering and Structural Dynamics.

R. E. O'Malley (1991), Singular Perturbation Methods for Ordinary Differential Equations, Springer, New York.

B. Owren and H. H. Simonsen (1995), ‘Alternative integration methods for problems in structural mechanics’, Comput. Meth. Appl. Mech. Eng. 122, 110.

T. J. Park and J. C. Light (1986), ‘Unitary quantum time evolution by iterative Lanczos reduction’, J. Chem. Phys. 85, 58705876.

C. S. Peskin and T. Schlick (1989), ‘Molecular dynamics by the backward Euler's method’, Comm. Pure Appl. Math. 42, 10011031.

L. R. Petzold (1981), ‘An efficient numerical method for highly oscillatory ordinary differential equations’, SIAM J. Numer. Anal. 18, 455479.

A. Portillo and J. M. Sanz-Serna (1995), ‘Lack of dissipativity is not symplecticness’, BIT 35, 269276.

S. Reich (1995), ‘Smoothed dynamics of highly oscillatory Hamiltonian systems’, Physica D 89, 2842.

J. P. Ryckaert , G. Ciccotti and H. J. C. Berendsen (1977), ‘Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes’, J. Comput. Phys. 23, 327341.

J. M. Sanz-Serna (1992), Symplectic integrators for Hamiltonian problems: an overview, in Acta Numerica, Vol. 1, Cambridge University Press, pp. 243286.

J. M. Sanz-Serna and M. P. Calvo (1994), Numerical Hamiltonian Problems, Chapman and Hall, London.

T. Schlick and A. Fogelson (1992), ‘TNPACK-A truncated Newton minimization package for large-scale problems: I. Algorithm and usage’, ACM Trans. Math. Software 18, 4670.

T. Schlick , E. Barth and M. Mandziuk (1997), ‘Biomolecular dynamics at long timesteps: bridging the timescale gap between simulation and experimentation’, Ann. Rev. Biophys. Biomol. Struct. To appear.

S. Schneider (1995), ‘Convergence results for multistep Runge–Kutta on stiff mechanical systems’, Numer. Math. 69, 495508.

G. Shroff and H. Keller (1993), ‘Stabilization of unstable procedures: the recursive projection method’, SIAM J. Numer. Anal. 30, 10991120.

B. Simeon (1996), ‘Modelling of a flexible slider crank mechanism by a mixed system of DAEs and PDEs’, Math. Model. of Systems 2, 118.

J. C. Simo and L. Vu-Quoc (1986), ‘A three-dimensional finite strain rod model. Part II: computational aspects’, Comput. Meth. Appl. Mech. Eng. 58, 79116.

R. D. Skeel (1993), ‘Variable step size destabilizes the Störmer/leapfrog/Verlet method’, BIT 33, 172175.

R. D. Skeel , G. Zhang and T. Schlick (1997), ‘A family of symplectic integrators: stability, accuracy, and molecular dynamics applications’, SIAM J. Sci. Comput. 18, 203222.

E. Stiefel and D. G. Bettis (1969), ‘Stabilization of Cowell's method’, Numer. Math. 13, 154175.

W. B. Streett , D. J. Tildesley and G. Saville (1978), ‘Multiple time step methods in molecular dynamics’, Mol. Phys. 35, 639648.

J. Tidblad and T. E. Graedel (1996), ‘GILDES model studies of aqueous chemistry. Initial SO2-induced atmospheric corrosion of copper’, Corrosion Science. To appear.

M. Tuckerman , B. J. Berne and G. J. Martyna (1992), ‘Reversible multiple time scale molecular dynamics’, J. Chem. Phys. 97, 19902001.

M. E. Tuckerman and M. Parrinello (1994), ‘Integrating the Car–Parrinello equations. I: Basic integration techniques’, J. Chem. Phys. 101, 13021315.

P. J. Van Der Houwen and B. P. Sommeijer (1984), ‘Linear multistep methods with reduced truncation error for periodic initial-value problems’, IMA J. Numer. Anal. 4, 479489.

P. J. Van Der Houwen and B. P. Sommeijer (1987), ‘Explicit Runge–Kutta (–Nyström) methods with reduced phase errors for computing oscillating solutions’, SIAM J. Numer. Anal. 24, 595617.

P. J. Van Der Houwen and B. P. Sommeijer (1989), ‘Phase-lag analysis of implicit Runge–Kutta methods’, SIAM J. Numer. Anal. 26, 214229.

W. F. Van Gunsteren and M. Karplus (1982), ‘Effects of constraints on the dynamics of macromolecules’, Macromolecules 15, 15281544.

J. Vanthournout , G. Vanden Berghe and H. De Meyer (1990), ‘Families of backward differentiation methods based on a new type of mixed interpolation’, Comput. Math. Appl. 20, 1930.

L. Verlet (1967), ‘Computer experiments on classical fluids. I: thermodynamical properties of Lennard–Jones molecules’, Phys. Rev. 159, 98103.

J. White and S. B. Leeb (1991), ‘An envelope-following approach to switching power converter simulation’, IEEE Trans. Power Electronics 6, 303307.

E. L. Wilson , M. Yuan and J. M. Dickens (1982), ‘Dynamic analysis by direct superposition of Ritz vectors’, Earthquake Engineering and Structural Dynamics 10, 813821.

W. L. Wood , M. Bossak and O. C. Zienkiewicz (1980), ‘An alpha modification of Newmark's method’, Internat. J. Numer. Methods Engrg. 15, 15621566.

W. S. Yoo and E. J. Haug (1986), ‘Dynamics of articulated structures. Part I: Theory’, J. Mech. Struct. Mach. 14, 105126.

G. Zhang and T. Schlick (1993), ‘LIN: a new algorithm to simulate the dynamics of biomolecules by combining implicit-integration and normal mode techniques’, J. Comput. Chem. Phys. 14, 12121233.

G. Zhang and T. Schlick (1994), ‘The Langevin/implicit-Euler/normal-mode scheme for molecular dynamics at large time steps’, J. Chem. Phys. 101, 49955012.

G. Zhang and T. Schlick (1995), ‘Implicit discretization schemes for Langevin dynamics’, Mol. Phys. 84, 10771098.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *