Skip to main content
×
×
Home

Exponential integrators

  • Marlis Hochbruck (a1) and Alexander Ostermann (a2)
Extract

In this paper we consider the construction, analysis, implementation and application of exponential integrators. The focus will be on two types of stiff problems. The first one is characterized by a Jacobian that possesses eigenvalues with large negative real parts. Parabolic partial differential equations and their spatial discretization are typical examples. The second class consists of highly oscillatory problems with purely imaginary eigenvalues of large modulus. Apart from motivating the construction of exponential integrators for various classes of problems, our main intention in this article is to present the mathematics behind these methods. We will derive error bounds that are independent of stiffness or highest frequencies in the system.

Since the implementation of exponential integrators requires the evaluation of the product of a matrix function with a vector, we will briefly discuss some possible approaches as well. The paper concludes with some applications, in which exponential integrators are used.

Copyright
References
Hide All
Bergamaschi, L. and Vianello, M. (2000), ‘Efficient computation of the exponential operator for large, sparse, symmetric matrices’, Numer. Linear Algebra Appl. 7, 2745.
Bergamaschi, L., Caliari, M. and Vianello, M. (2004), The ReLPM exponential integrator for FE discretizations of advection–diffusion equations. In Computational Science: ICCS 2004, Vol. 3039 of Lecture Notes in Computer Science, Springer, pp. 434442.
Bergamaschi, L., Caliari, M., Mart́nez, A. and Vianello, M. (2005), A parallel exponential integrator for large-scale discretizations of advection-diffusion models. In Recent Advances in Parallel Virtual Machine and Message Passing Interface, Vol. 3666 of Lecture Notes in Computer Science, Springer, pp. 483492.
Bergamaschi, L., Caliari, M., Martínez, A. and Vianello, M. (2006), Comparing Leja and Krylov approximations of large scale matrix exponentials. In Computational Science: ICCS 2006, Vol. 3994 of Lecture Notes in Computer Science, Springer, pp. 685692.
Berland, H., Islas, A. L. and Schober, C. M. (2007 a), ‘Conservation of phase space properties using exponential integrators on the cubic Schrödinger equation’, J. Comput. Phys. 225, 284299.
Berland, H., Owren, B. and Skaflestad, B. (2006), ‘Solving the nonlinear Schrödinger equation using exponential integrators’, Model. Identif. Control 27, 201217.
Berland, H., Skaflestad, B. and Wright, W. M. (2007 b), ‘EXPINT: A MATLAB package for exponential integrators’, ACM Trans. Math. Software 33, 4: 1–4: 17.
Beylkin, G., Keiser, J. M. and Vozovoi, L. (1998), ‘A new class of time discretization schemes for the solution of nonlinear PDEs’, J. Comput. Phys. 147, 362387.
Biesiadecki, J. J. and Skeel, R. D. (1993), ‘Dangers of multiple time step methods’, J. Comput. Phys. 109, 318328.
Blanes, S., Casas, F. and Ros, J. (2002), ‘High order optimized geometric integrators for linear differential equations’, BIT 42, 262284.
Blanes, S., Casas, F., Oteo, J. and Ros, J. (2009), ‘The Magnus expansion and some of its applications’, Physics Reports 470, 151238.
Born, M. and Fock, V. (1928), ‘Beweis des Adiabatensatzes’, Z. Phys. A Hadrons and Nuclei 51, 165180.
Botchev, M. A., Faragó, I. and Horváth, R. (2009), ‘Application of operator splitting to the Maxwell equations including a source term’, Appl. Numer. Math. 59, 522541.
Botchev, M. A., Harutyunyan, D. and van der Vegt, J. J. W. (2006), ‘The Gautschi time stepping scheme for edge finite element discretizations of the Maxwell equations’, J. Comput. Phys. 216, 654686.
Budd, C. and Iserles, A. (1999), ‘On the solution of linear differential equations in Lie groups’, Philos. Trans. Royal Soc. A 357, 946956.
Caliari, M. (2007), ‘Accurate evaluation of divided differences for polynomial interpolation of exponential propagators’, Computing 80, 189201.
Caliari, M. and Ostermann, A. (2009), ‘Implementation of exponential Rosenbrocktype integrators’, Appl. Numer. Math. 59, 568581.
Caliari, M., Vianello, M. and Bergamaschi, L. (2004), ‘Interpolating discrete advection-diffusion propagators at Leja sequences’, J. Comput. Appl. Math. 172, 7999.
Calvo, M. P. and Palencia, C. (2006), ‘A class of explicit multistep exponential integrators for semilinear problems’, Numer. Math. 102, 367381.
Celledoni, E., Cohen, D. and Owren, B. (2008), ‘Symmetric exponential integrators with an application to the cubic Schrödinger equation’, Found. Comp. Math. 8, 303317.
Celledoni, E., Marthinsen, A. and Owren, B. (2003), ‘Commutator-free Lie group methods’, Future Generation Computer Systems 19, 341352.
Certaine, J. (1960), The solution of ordinary differential equations with large time constants. In Mathematical Methods for Digital Computers, Wiley, pp. 128132.
Cohen, D., Jahnke, T., Lorenz, K. and Lubich, C. (2006), Numerical integrators for highly oscillatory Hamiltonian systems: A review. In Analysis, Modeling and Simulation of Multiscale Problems (Mielke, A., ed.), Springer, pp. 553576.
Condon, M., Deaño, A. and Iserles, A. (2009), ‘On highly oscillatory problems arising in electronic engineering’, Mathematical Modelling and Numerical Analysis 43, 785804.
Cox, S. M. and Matthews, P. C. (2002), ‘Exponential time differencing for stiff systems’, J. Comput. Phys. 176, 430455.
De la Cruz, H., Biscay, R. J., Carbonell, F., Ozaki, T. and Jimenez, J. (2007), ‘A higher order local linearization method for solving ordinary differential equations’, Appl. Math. Comput. 185, 197212.
Deuflhard, P. (1979), ‘A study of extrapolation methods based on multistep schemes without parasitic solutions’, Z. Angew. Math. Phys. 30, 177189.
Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A., Reich, S. and Skeel, R. D., eds (1999), Algorithms for Macromolecular Modelling, Vol. 4 of Lecture Notes in Computational Science and Engineering, Springer.
Dixon, J. and McKee, S. (1986), ‘Weakly singular discrete Gronwall inequalities’, Z. Angew. Math. Mech. 66, 535544.
Druskin, V. L. and Knizhnerman, L. A. (1991), ‘Error bounds in the simple Lanczos procedure for computing functions of symmetric matrices and eigenvalues’, Comput. Math. Math. Phys. 31, 2030.
Druskin, V. L. and Knizhnerman, L. A. (1994), ‘On application of the Lanczos method to solution of some partial differential equations’, J. Comput. Appl. Math. 50, 255’262.
Druskin, V. L. and Knizhnerman, L. A. (1995), ‘Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic’, Numer. Linear Algebra Appl. 2, 205217.
Ehle, B. L. and Lawson, J. D. (1975), ‘Generalized Runge-Kutta processes for stiff initial-value problems’, J. Inst. Math. Appl. 16, 1121.
Eiermann, M. and Ernst, O. G. (2006), ‘A restarted Krylov subspace method for the evaluation of matrix functions’, SIAM J. Numer. Anal. 44, 24812504.
Emmrich, E. (2005), ‘Stability and error of the variable two-step BDF for semilinear parabolic problems’, J. Appl. Math. Comput. 19, 3355.
Engel, K.-J. and Nagel, R. (2000), One-Parameter Semigroups for Linear Evolution Equations, Vol. 194 of Graduate Texts in Mathematics, Springer.
Friedli, A. (1978), Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Differentialgleichungssysteme. In Numerical Treatment of Differential Equations (Burlirsch, R., Grigorieff, R. and Schröder, J., eds), Vol. 631 of Lecture Notes in Mathematics, Springer, pp. 3550.
Friesner, R. A., Tuckerman, L. S., Dornblaser, B. C. and Russo, T. V. (1989), ‘A method for exponential propagation of large systems of stiff nonlinear differential equations’, J. Sci. Comput. 4, 327354.
Frommer, A. and Simoncini, V. (2008), Matrix functions. In Model Order Reduction: Theory, Research Aspects and Applications (Schilders, W. H. and van der Vorst, H. A., eds), Mathematics in Industry, Springer, pp. 275304.
Gallopoulos, E. and Saad, Y. (1992), ‘Efficient solution of parabolic equations by Krylov approximation methods’, SIAM J. Sci. Statist. Comput. 13, 12361264.
García-Archilla, B., Sanz-Serna, J. M. and Skeel, R. D. (1998), ‘Long-time-step methods for oscillatory differential equations’, SIAM J. Sci. Comput. 20, 930963.
Gautschi, W. (1961), ‘Numerical integration of ordinary differential equations based on trigonometric polynomials’, Numer. Math. 3, 381397.
Gondal, M. A. (2010), ‘Exponential Rosenbrock integrators for option pricing’, J. Comput. Appl. Math. 234, 11531160.
González, C. and Thalhammer, M. (2007), ‘A second-order Magnus-type integrator for quasi-linear parabolic problems’, Math. Comp. 76, 205231.
González, C., Ostermann, A. and Thalhammer, M. (2006), ‘A second-order Magnustype integrator for nonautonomous parabolic problems’, J. Comput. Appl. Math. 189, 142156.
Grimm, V. (2002), Exponentielle Integratoren als Lange-Zeitschritt-Verfahren f̈r oszillatorische Differentialgleichungen zweiter Ordnung. Dissertation, Heinrich-Heine Universität Düsseldorf.
Grimm, V. (2005 a), ‘A note on the Gautschi-type method for oscillatory secondorder differential equations’, Numer. Math. 102, 6166.
Grimm, V. (2005 b), ‘On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations’, Numer. Math. 100, 7189.
Grimm, V. and Hochbruck, M. (2006), ‘Error analysis of exponential integrators for oscillatory second-order differential equations’, J. Phys. A 39, 54955507.
Grimm, V. and Hochbruck, M. (2008), ‘Rational approximation to trigonometric operators’, BIT 48, 215229.
Grubmüller, H., Heller, H., Windemuth, A. and Schulten, K. (1991), ‘Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions’, Molecular Simulation 6, 121142.
Hairer, E. and Lubich, C. (2000), ‘Long-time energy conservation of numerical methods for oscillatory differential equations’, SIAM J. Numer. Anal. 38, 414441.
Hairer, E. and Lubich, C. (2009), Oscillations over long times in numerical Hamiltonian systems. In Highly Oscillatory Problems (Engquist, E. H. B., Fokas, A. and Iserles, A., eds), Vol. 366 of London Mathematical Society Lecture Notes, Cambridge University Press, pp. 124.
Hairer, E. and Wanner, G. (1996), Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Vol. 14 of Springer Series in Computational Mathematics, 2nd edn, Springer.
Hairer, E., Lubich, C. and Wanner, G. (2006), Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Vol. 31 of Springer Series in Computational Mathematics, Springer.
Hairer, E., Nørsett, S. P. and Wanner, G. (1993), Solving Ordinary Differential Equations I: Nonstiff Problems, Vol. 8 of Springer Series in Computational Mathematics, 2nd edn, Springer.
Henry, D. (1981), Geometric Theory of Semilinear Parabolic Equations, Vol. 840 of Lecture Notes in Mathematics, Springer.
Hersch, J. (1958), ‘Contribution à la méthode des équations aux différences’, Z. Angew. Math. Phys. 9, 129180.
Higham, N. J. (2008), Functions of Matrices: Theory and Computation, SIAM.
Higham, N. J. and Al-Mohy, A. H. (2010), Computing matrix functions. In Acta Numerica, Vol. 19, Cambridge University Press, pp. 159208.
Hochbruck, M. and Lubich, C. (1997), ‘;On Krylov subspace approximations to the matrix exponential operator’, SIAM J. Numer. Anal. 34, 19111925.
Hochbruck, M. and Lubich, C. (1999 a), A bunch of time integrators for quantum/classical molecular dynamics. In Deuflhard et al. (1999), pp. 421432.
Hochbruck, M. and Lubich, C. (1999 b), ‘Exponential integrators for quantumclassical molecular dynamics’, BIT 39, 620645.
Hochbruck, M. and Lubich, C. (1999 c), ‘A Gautschi-type method for oscillatory second-order differential equations’, Numer. Math. 83, 403426.
Hochbruck, M. and Lubich, C. (2003), ‘On Magnus integrators for time-dependent Schrödinger equations’, SIAM J. Numer. Anal. 41, 945963.
Hochbruck, M. and Ostermann, A. (2005 a), ‘Explicit exponential Runge-Kutta methods for semilinear parabolic problems’, SIAM J. Numer. Anal. 43, 10691090.
Hochbruck, M. and Ostermann, A. (2005 b), ‘Exponential Runge-Kutta methods for parabolic problems’, Appl. Numer. Math. 53, 323339.
Hochbruck, M. and Ostermann, A. (2006), ‘Explicit integrators of Rosenbrock-type’, Oberwolfach Reports 3, 11071110.
Hochbruck, M. and van den Eshof, J. (2006), ‘Preconditioning Lanczos approximations to the matrix exponential’, SIAM J. Sci. Comput. 27, 14381457.
Hochbruck, M., Hönig, M. and Ostermann, A. (2009 a), ‘A convergence analysis of the exponential Euler iteration for nonlinear ill-posed problems’, Inverse Problems 25, 075009.
Hochbruck, M., Hönig, M. and Ostermann, A. (2009 b), ‘Regularization of nonlinear ill-posed problems by exponential integrators’, Mathematical Modelling and Numerical Analysis 43, 709720.
Hochbruck, M., Lubich, C. and Selhofer, H. (1998), ‘Exponential integrators for large systems of differential equations’, SIAM J. Sci. Comput. 19, 15521574.
Hochbruck, M., Ostermann, A. and Schweitzer, J. (2009 c), ‘Exponential Rosenbrock-type methods’, SIAM J. Numer. Anal. 47, 786803.
Hundsdorfer, W. and Verwer, J. G. (2007), Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Vol. 33 of Springer Series in Computational Mathematics, corrected 2nd printing, Springer.
't Hout, K. J. and Weideman, J. A. C. (2009), Appraisal of a contour integral method for the Black-Scholes and Heston equations. Technical report, Department of Mathematics and Computer Science, University of Antwerp.
Iserles, A. (2002 a), ‘On the global error of discretization methods for highlyoscillatory ordinary differential equations’, BIT 42, 561599.
Iserles, A. (2002 b), ‘Think globally, act locally: Solving highly-oscillatory ordinary differential equations’, Appl. Numer. Math. 43, 145160.
Iserles, A. and Nørsett, S. P. (1999), ‘On the solution of linear differential equations in Lie groups’, Philos. Trans. Royal Soc. A 357, 9831019.
Iserles, A. and Nørsett, S. (2004), ‘On quadrature methods for highly oscillatory integrals and their implementation’, BIT 44, 755772.
Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. and Zanna, A. (2000), Lie-group methods. In Acta Numerica, Vol. 9, Cambridge University Press, pp. 215365.
Izaguirre, J. A., Reich, S. and Skeel, R. D. (1999), ‘Longer time steps for molecular dynamics’, J. Chem. Phys. 110, 98539864.
Jahnke, T. (2003), Numerische Verfahren für fast adiabatische Quantendynamik. PhD thesis, Eberhard-Karls-Universität, Tübingen, Germany.
Jahnke, T. (2004), ‘Long-time-step integrators for almost-adiabatic quantum dynamics’, SIAM J. Sci. Comput. 25, 21452164.
Jahnke, T. and Lubich, C. (2000), ‘Error bounds for exponential operator splittings’, BIT 40, 735744.
Jahnke, T. and Lubich, C. (2003), ‘Numerical integrators for quantum dynamics close to the adiabatic limit’, Numer. Math. 94, 289314.
Karle, C., Schweitzer, J., Hochbruck, M. and Spatschek, K.-H. (2008), ‘A parallel implementation of a two-dimensional fluid laser-plasma integrator for stratified plasma-vacuum systems’, J. Comput. Phys. 227, 77017719.
Karle, C., Schweitzer, J., Hochbruck, M., Laedke, E. W. and Spatschek, K.-H. (2006), ‘Numerical solution of nonlinear wave equations in stratified dispersive media’, J. Comput. Phys. 216, 138152.
Kassam, A.-K. and Trefethen, L. N. (2005), ‘Fourth-order time-stepping for stiff PDEs’, SIAM J. Sci. Comput. 26, 12141233.
Klein, C. (2008), ‘Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equations’, Electron. Trans. Numer. Anal. 29, 116135.
Knizhnerman, L. A. (1991), ‘Computation of functions of unsymmetric matrices by means of Arnoldi's method’, J. Comput. Math. Math. Phys. 31, 516 (in the Russian issue).
Knizhnerman, L. A. (1992), ‘Error bounds in Arnoldi's method: The case of a normal matrix’, Comput. Math. Math. Phys. 32, 11991211.
Knizhnerman, L. and Simoncini, V. (2009), ‘A new investigation of the extended Krylov subspace method for matrix function evaluations’, Numer. Linear Algebra Appl. In press.
Kosloff, R. (1994), ‘Propagation methods for quantum molecular dynamics’, Annu. Rev. Phys. Chem. 45, 145178.
Krogstad, S. (2005), ‘Generalized integrating factor methods for stiff PDEs’, J. Comput. Phys. 203, 7288.
Lambert, J. D. and Sigurdsson, S. T. (1972), ‘Multistep methods with variable matrix coefficients’, SIAM J. Numer. Anal. 9, 715733.
Lawson, J. D. (1967), ‘Generalized Runge-Kutta processes for stable systems with large Lipschitz constants’, SIAM J. Numer. Anal. 4, 372380.
Lee, H. and Sheen, D. (2009), ‘Laplace transformation method for the Black-Scholes equations’, Int. J. Numer. Anal. Model. 6, 642659.
López-Fernández, M. (2009), On the implementation of exponential methods for semilinear parabolic equations. Technical report, Instituto de Ciencias Matemáaticas, Madrid, Spain.
López-Fernández, M., Palencia, C. and Schädle, A. (2006), ‘A spectral order method for inverting sectorial Laplace transforms’, SIAM J. Numer. Anal. 44, 13321350.
Lorenz, K., Jahnke, T. and Lubich, C. (2005), ‘Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigendecomposition’, BIT 45, 91115.
Lubich, C. (2008), From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS).
Lunardi, A. (1995), Analytic Semigroups and Optimal Regularity in Parabolic Problems, Vol. 16 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser.
Ma, Q. and Izaguirre, J. A. (2003 a), Long time step molecular dynamics using targeted Langevin stabilization. In SAC '03: Proc. 2003 ACM Symposium on Applied Computing, ACM, New York, pp. 178182.
Ma, Q. and Izaguirre, J. A. (2003 b), ‘Targeted mollified impulse: A multiscale stochastic integrator for long molecular dynamics simulations’, Multiscale Model. Simul. 2, 121.
Ma, Q., Izaguirre, J. A. and Skeel, R. D. (2003), ‘Verlet-I/R-RESPA/impulse is limited by nonlinear instabilities’, SIAM J. Sci. Comput. 24, 19511973.
Magnus, W. (1954), ‘On the exponential solution of differential equations for a linear operator’, Comm. Pure Appl. Math. 7, 649673.
Martínez, A., Bergamaschi, L., Caliari, M. and Vianello, M. (2009), ‘A massively parallel exponential integrator for advection-diffusion models’, J. Comput. Appl. Math. 231, 8291.
McLachlan, R. I. and Quispel, G. R. W. (2002), Splitting methods. In Acta Numerica, Vol. 11, Cambridge University Press, pp. 341434.
Minchev, B.V. and Wright, W. (2005), A review of exponential integrators for first order semi-linear problems. Preprint, NTNU Trondheim.
Moan, P. C. and Niesen, J. (2008), ‘Convergence of the Magnus series’, Found. Comput. Math. 8, 291301.
Moler, C. and Van Loan, C. (2003), ‘Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later’, SIAM Rev. 45, 349.
Moret, I. and Novati, P. (2001), ‘An interpolatory approximation of the matrix exponential based on Faber polynomials’, J. Comput. Appl. Math. 131, 361380.
Moret, I. and Novati, P. (2004), ‘RD-rational approximations of the matrix exponential’, BIT 44, 595615.
Nauts, A. and Wyatt, R. E. (1983), ‘New approach to many-state quantum dynamics: The recursive-residue-generation method’, Phys. Rev. Lett. 51, 22382241.
Nettesheim, P. and Schütte, C. (1999), Numerical integrators for quantum-classical molecular dynamics. In Deuflhard et al. (1999), pp. 396411.
Nettesheim, P., Bornemann, F. A., Schmidt, B. and Schütte, C. (1996), ‘An explicit and symplectic integrator for quantum-classical molecular dynamics’, Chem. Phys. Lett. 256, 581588.
Niegemann, J., Tkeshelashvili, L. and Busch, K. (2007), ‘Higher-order time-domain simulations of Maxwell's equations using Krylov-subspace methods’, J. Comput. Theor. Nanoscience 4, 627634.
Niehoff, J. (2007), Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen auf die Implementierung exponentieller Integratoren. Dissertation, Heinrich-Heine Universität Düsseldorf, Mathematisches Institut.
Niesen, J. and Wright, W. (2009), A Krylov subspace algorithm for evaluating the φ-functions appearing in exponential integrators. Preprint: arXiv:0907.4631vl.
Nørsett, S. P. (1969), An A-stable modification of the Adams-Bashforth methods. In Conference on the Numerical Solution of Differential Equations, Vol. 109 of Lecture Notes in Mathematics, Springer, pp. 214219.
Ostermann, A., Thalhammer, M. and Wright, W. M. (2006), ‘A class of explicit exponential general linear methods’, BIT 46, 409431.
Park, T. J. and Light, J. C. (1986), ‘Unitary quantum time evolution by iterative Lanczos reduction’, J. Chem. Phys. 85, 58705876.
Pazy, A. (1992), Semigroups of Linear Operators and Applications to Partial Differential Equations, Vol. 44 of Applied Mathematical Sciences, corrected 2nd printing, Springer.
Peskin, U., Kosloff, R. and Moiseyev, N. (1994), ‘The solution of the time dependent Schrödinger equation by the (t, t′) method: The use of global polynomial propagators for time dependent Hamiltonians’, J. Chem. Phys. 100, 88498855.
Pope, D. A. (1963), ‘An exponential method of numerical integration of ordinary differential equations’, Comm. Assoc. Comput. Mach. 6, 491493.
Pototschnig, M., Niegemann, J., Tkeshelashvili, L. and Busch, K. (2009), ‘Timedomain simulations of nonlinear Maxwell equations using operator-exponential methods’, IEEE Trans. Antenn. Propag. 57, 475483.
Rambeerich, N., Tangman, D. Y., Gopaul, A. and Bhuruth, M. (2009), ‘Exponential time integration for fast finite element solutions of some financial engineering problems’, J. Comput. Appl. Math. 224, 668678.
Ramos, J. I. and García-López, C. M. (1997), ‘Piecewise-linearized methods for initial-value problems’, Appl. Math. Comput. 82, 273302.
Saad, Y. (1992), ‘Analysis of some Krylov subspace approximations to the matrix exponential operator’, SIAM J. Numer. Anal. 29, 209228.
Saad, Y. (1994), SPARSKIT: A basic tool kit for sparse matrix computations, version 2. Technical report, Department of Computer Science and Engineering, University of Minnesota.
Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, 2nd edn, SIAM.
Schädle, A., López-Fernández, M. and Lubich, C. (2006), ‘Fast and oblivious convolution quadrature’, SIAM J. Sci. Comput. 28, 421438.
Schlick, T., Skeel, R. D., Brunger, A. T., Kalé, L. V., Board, J. A., Hermans, J. and Schulten, K. (1999), ‘Algorithmic challenges in computational molecular biophysics’, J. Comput. Phys. 151, 948.
Schmelzer, T. and Trefethen, L. N. (2007), ‘Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals’, Electron. Trans. Numer. Anal. 29, 118.
Schütte, C. and Bornemann, F. A. (1999), ‘On the singular limit of the quantumclassical molecular dynamics model’, SIAM J. Appl. Math. 59, 12081224.
Sidje, R. B. (1998), ‘Expokit: A software package for computing matrix exponentials’, ACM Trans. Math. Software 24, 130156.
Stewart, D.E. and Leyk, T. S. (1996), ‘Error estimates for Krylov subspace approximations of matrix exponentials’, J. Comput. Appl. Math. 72, 359369.
Strehmel, K. and Weiner, R. (1987), ‘B-convergence results for linearly implicit one step methods’, BIT 27, 264281.
Strehmel, K. and Weiner, R. (1992), Linear-implizite Runge-Kutta Methoden und ihre Anwendungen, Vol. 127 of Teubner-Texte zur Mathematik, Teubner.
Tal-Ezer, H. and Kosloff, R. (1984), ‘An accurate and efficient scheme for propagating the time-dependent Schrödinger equation’, J. Chem. Phys. 81, 39673971.
Tal-Ezer, H., Kosloff, R. and Cerjan, C. (1992), ‘Low-order polynomial approximation of propagators for the time-dependent Schrödinger equation’, J. Comput. Phys. 100, 179187.
Tangman, D. Y., Gopaul, A. and Bhuruth, M. (2008), ‘Exponential time integration and Chebychev discretisation schemes for fast pricing of options’, Appl. Numer. Math. 58, 13091319.
Tautenhahn, U. (1994), ‘On the asymptotical regularization of nonlinear ill-posed problems’, Inverse Problems 10, 14051418.
Teufel, S. (2003), Adiabatic Perturbation Theory in Quantum Dynamics, Vol. 1821 of Lecture Notes in Mathematics, Springer.
Thalhammer, M. (2006), ‘A fourth-order commutator-free exponential integrator for nonautonomous differential equations’, SIAM J. Numer. Anal. 44, 851864.
Tokman, M. (2006), ‘Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods’, J. Comput. Phys. 213, 748776.
Tokman, M. and Bellan, P. M. (2002), ‘Three-dimensional model of the structure and evolution of coronal mass ejections’, Astrophys. J. 567, 12021210.
Trefethen, L. N., Weideman, J. A. C. and Schmelzer, T. (2006), ‘Talbot quadratures and rational approximations’, BIT 46, 653670.
Tuckerman, M., Berne, B. J. and Martyna, G. J. (1992), ‘Reversible multiple time scale molecular dynamics’, J. Chem. Phys. 97, 19902001.
Verwer, J. (1976), ‘On generalized linear multistep methods with zero-parasitic roots and an adaptive principal root’, Numer. Math. 27, 143155.
Verwer, J. G. and Botchev, M. A. (2009), ‘Unconditionally stable integration of Maxwell's equations’, Linear Algebra Appl. 431, 300317.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed