Skip to main content
×
Home
    • Aa
    • Aa

Fast direct solvers for integral equations in complex three-dimensional domains

  • Leslie Greengard (a1), Denis Gueyffier (a2), Per-Gunnar Martinsson (a3) and Vladimir Rokhlin (a4)
Abstract

Methods for the solution of boundary integral equations have changed significantly during the last two decades. This is due, in part, to improvements in computer hardware, but more importantly, to the development of fast algorithms which scale linearly or nearly linearly with the number of degrees of freedom required. These methods are typically iterative, based on coupling fast matrix-vector multiplication routines with conjugate-gradient-type schemes. Here, we discuss methods that are currently under development for the fast, direct solution of boundary integral equations in three dimensions. After reviewing the mathematical foundations of such schemes, we illustrate their performance with some numerical examples, and discuss the potential impact of the overall approach in a variety of settings.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

B. Alpert and V. Rokhlin (1991), ‘A fast algorithm for the evaluation of Legendre expansions’, SIAM J. Sci. Statist. Comput. 12, 158179.

B. Alpert , G. Beylkin , R. Coifman and V. Rokhlin (1993), ‘Wavelet-like bases for the fast solution of second-kind integral equations’, SIAM J. Sci. Comput. 14, 159184.

M. D. Altman , J. P. Bardhan , B. Tidor and J. K. White (2006), ‘FFTSVD: A fast multiscale boundary-element method solver suitable for bio-MEMS and biomolecule simulation’, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 25, 274284.

A. H. Boschitsch , M. O. Fenley and W. K. Olson (1999), ‘A fast adaptive multipole algorithm for calculating screened Coulomb (Yukawa) interactions’, J. Comput. Phys. 151, 212.

F. X. Canning and K. Rogovin (1998), ‘Fast direct solution of standard moment-method matrices’, IEEE Antennas Propag. 40, 1526.

J. Carrier , L. Greengard and V. Rokhlin (1988), ‘A fast adaptive multipole algorithm for particle simulations’, SIAM J. Sci. Statist. Comput. 9, 669686.

S. Chandrasekaran , P. Dewilde , M. Gu , W. Lyons and T. Pals (2006), ‘A fast solver for HSS representations via sparse matrices’, SIAM J. Matrix Anal. Appl. 29, 6781.

H. Cheng , Z. Gimbutas , P. G. Martinsson and V. Rokhlin (2005), ‘On the compression of low rank matrices’, SIAM J. Sci. Comput. 26, 13891404.

W. C. Chew (1989). ‘An N2 algorithm for the multiple scattering solution of N scatterers’, Micro. Opt. Tech. Lett. 2, 380383.

J. W. Cooley and J. W. Tukey (1965), ‘An algorithm for the machine calculation of complex Fourier series’, Math. Comput. 19, 297301.

E. Darve and P. Have (2004), ‘Fast multipole method for Maxwell equations stable at all frequencies’, Royal Soc. London, Trans. Ser. A 362, 603628.

M. E. Davis and J. A. McCammon (1990), ‘Electrostatics in biomolecular structure and dynamicsChem. Rev. 90, 509521.

Y. Eidelman and I. Gohberg (1999). ‘Linear complexity inversion algorithms for a class of structured matrices’, Integral Equations Operator Theory 35, 2852.

S. A. Goreinov , E. E. Yrtyshnikov and N. L. Zamarashkin (1997), ‘A theory of pseudoskeleton approximations’, Linear Algebra Appl. 261, 121.

L. Greengard and J. Helsing (1998), ‘On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites’, J. Mech. Phys. Solids 46, 14411462.

L. Greengard and V. Rokhlin (1987), ‘A fast algorithm for particle simulations’, J. Comput. Phys. 73, 325348.

L. Greengard and V. Rokhlin (1991), ‘On the numerical solution of two-point boundary value problems’, Comm. Pure Appl. Math. 44, 419452.

L. Greengard and V. Rokhlin (1997), A new version of the fast multipole method for the Laplace equation in three dimensions. In Acta Numerica, Vol. 6, Cambridge University Press, pp. 229269.

L. Greengard and J. Strain (1991). ‘The Fast Gauss Transform’, SIAM J. Sci. Statist. Comput. 12, 7994.

M. Gu and S. C. Eisenstat (1996), ‘Efficient algorithms for computing a strong rank-revealing QR factorization’, SIAM J. Sci. Comput. 17, 848869.

W. Hackbusch (1999), ‘A sparse matrix arithmetic based on H-matrices I: Introduction to H-matrices’, Computing 62, 89108.

W. Hackbusch and Z. P. Nowak (1989), ‘On the fast matrix multiplication in the boundary element method by panel clustering’, Numer. Math. 54, 463491.

M. J. Holst , N. A. Baker and F. Wang (2000), ‘Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I: Algorithms and examples’, J. Comput. Chem. 21, 13191342.

R. Kastner (1989), ‘An ‘add-on method’ for the analysis of scattering from large planar structures’, IEEE Trans. Antennas Propag. 37, 353361.

J.-Y. Lee and L. Greengard (1997), ‘A fast adaptive numerical method for stiff two-point boundary value problems’, SIAM J. Sci. Comput. 18, 403429.

J. Liang and S. Subramaniam (1997), ‘Computation of molecular electrostatics with boundary element methods’, Biophys. J. 73, 1830.

B. Lu , X. Cheng , J. Huang and J. A. McCammon (2006), ‘Order N algorithm for computation of electrostatic interactions in biomolecular systems’, Proc. Nat. Acad. Sci. 103, 1931419319.

S. A. Marshall , C. L. Vizcarra and S. L. Mayo (2005), ‘One- and two-body decomposable Poisson–Boltzmann methods for protein design calculations’, Protein Science 14, 12931304.

P.-G. Martinsson (2006), ‘Fast evaluation of electrostatic interactions in multiphase dielectric media’, J. Comput. Phys. 211, 289299.

P.-G. Martinsson and V. Rokhlin (2005), ‘A fast direct solver for boundary integral equations in two dimensions’, J. Comput. Phys. 205, 123.

P.-G. Martinsson and V. Rokhlin (2007), ‘A fast direct solver for scattering problems involving elongated structures’, J. Comput. Phys. 221, 288302.

K. Nabors and J. White (1991), ‘FASTCAP: A multipole accelerated 3-D capacitance extraction program’, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 10, 14471459.

N. Nishimura (2002), ‘Fast multipole accelerated boundary integral equation methods’, Appl. Mech. Rev. 55, 299324.

J. R. Phillips and J. White (1997), ‘A precorrected-FFT method for electrostatic analysis of complicated 3-D structures’, IEEE Trans. Computer-Aided Design 16, 10591072.

W. Rocchia , S. Sridharan , A. Nicholls , E. Alexov , A. Chiabrera and B. Honig (2002), ‘Rapid grid-based construction of the molecular surface for both molecules and geometric objects: Applications to the finite difference Poisson–Boltzmann method’, J. Comput. Chem. 23, 128137.

V. Rokhlin (1985), ‘Rapid solution of integral equations of classical potential theory’, J. Comput. Phys. 60, 187207.

V. Rokhlin (1988), ‘A fast algorithm for the discrete Laplace transformation’, J. Complexity 4, 1232.

Y. Saad and M. H. Schultz (1986), ‘GMRES: A generalized minimum residual algorithm for solving nonsymmetric linear systems’, SIAM J. Sci. Statist. Comput. 7, 856869.

K. A. Sharp and B. Honig (1990), ‘Electrostatic interactions in macromolecules: Theory and applications’, Ann. Rev. Biophys. Biophys. Chem. 19, 301332.

P. Starr and V. Rokhlin (1994). ‘On the numerical solution of two-point boundary value problems II’, Comm. Pure Appl. Math. 47, 11171159.

J. Strain (1992), ‘The fast Laplace transform based on Laguerre functions’, Math. Comp. 58, 275284.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 52 *
Loading metrics...

Abstract views

Total abstract views: 158 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.