Skip to main content
×
Home
    • Aa
    • Aa

Finite element exterior calculus, homological techniques, and applications

  • Douglas N. Arnold (a1), Richard S. Falk (a2) and Ragnar Winther (a3)
Abstract

Finite element exterior calculus is an approach to the design and understanding of finite element discretizations for a wide variety of systems of partial differential equations. This approach brings to bear tools from differential geometry, algebraic topology, and homological algebra to develop discretizations which are compatible with the geometric, topological, and algebraic structures which underlie well-posedness of the PDE problem being solved. In the finite element exterior calculus, many finite element spaces are revealed as spaces of piecewise polynomial differential forms. These connect to each other in discrete subcomplexes of elliptic differential complexes, and are also related to the continuous elliptic complex through projections which commute with the complex differential. Applications are made to the finite element discretization of a variety of problems, including the Hodge Laplacian, Maxwell’s equations, the equations of elasticity, and elliptic eigenvalue problems, and also to preconditioners.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 132 *
Loading metrics...

Abstract views

Total abstract views: 571 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.