Skip to main content Accesibility Help

Finite-volume schemes for shallow-water equations

  • Alexander Kurganov (a1) (a2)

Shallow-water equations are widely used to model water flow in rivers, lakes, reservoirs, coastal areas, and other situations in which the water depth is much smaller than the horizontal length scale of motion. The classical shallow-water equations, the Saint-Venant system, were originally proposed about 150 years ago and still are used in a variety of applications. For many practical purposes, it is extremely important to have an accurate, efficient and robust numerical solver for the Saint-Venant system and related models. As their solutions are typically non-smooth and even discontinuous, finite-volume schemes are among the most popular tools. In this paper, we review such schemes and focus on one of the simplest (yet highly accurate and robust) methods: central-upwind schemes. These schemes belong to the family of Godunov-type Riemann-problem-solver-free central schemes, but incorporate some upwinding information about the local speeds of propagation, which helps to reduce an excessive amount of numerical diffusion typically present in classical (staggered) non-oscillatory central schemes. Besides the classical one- and two-dimensional Saint-Venant systems, we will consider the shallow-water equations with friction terms, models with moving bottom topography, the two-layer shallow-water system as well as general non-conservative hyperbolic systems.

Hide All
Abgrall, R. (1994), ‘On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation’, J. Comput. Phys. 114, 4558.
Abgrall, R. and Karni, S. (2009), ‘Two-layer shallow water system: A relaxation approach’, SIAM J. Sci. Comput. 31, 16031627.
Arminjon, P. and Viallon, M.-C. (1995), ‘Généralisation du schéma de Nessyahu–Tadmor pour une équation hyperbolique à deux dimensions d’espace’, CR Acad. Sci. Paris Sér. I Math. 320, 8588.
Arminjon, P., Viallon, M.-C. and Madrane, A. (1997), ‘A finite volume extension of the Lax–Friedrichs and Nessyahu–Tadmor schemes for conservation laws on unstructured grids’, Internat. J. Comput. Fluid Dyn. 9, 122.
Ascher, U. M., Ruuth, S. J. and Spiteri, R. J. (1997), ‘Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations’, Appl. Numer. Math. 25, 151167.
Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R. and Perthame, B. (2004), ‘A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows’, SIAM J. Sci. Comput. 25, 20502065.
Beljadid, A., Mohammadian, A. and Kurganov, A. (2016), ‘Well-balanced positivity preserving cell-vertex central-upwind scheme for shallow water flows’, Comput. & Fluids 136, 193206.
Ben-Artzi, M. (1989), ‘The generalized Riemann problem for reactive flows’, J. Comput. Phys. 81, 70101.
Ben-Artzi, M. and Falcovitz, J. (1984), ‘A second-order Godunov-type scheme for compressible fluid dynamics’, J. Comput. Phys. 55, 132.
Ben-Artzi, M. and Falcovitz, J. (1986), ‘An upwind second-order scheme for compressible duct flows’, SIAM J. Sci. Statist. Comput. 7, 744768.
Ben-Artzi, M. and Falcovitz, J. (2003), Generalized Riemann Problems in Computational Fluid Dynamics, Vol. 11 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.
Ben-Artzi, M., Li, J. and Warnecke, G. (2006), ‘A direct Eulerian GRP scheme for compressible fluid flows’, J. Comput. Phys. 218, 1943.
Bernstein, A., Chertock, A. and Kurganov, A. (2016), ‘Central-upwind scheme for shallow water equations with discontinuous bottom topography’, Bull. Braz. Math. Soc. (N.S.) 47, 91103.
Bernstein, A., Chertock, A., Kurganov, A. and Wu, T. (2018), ‘Central-upwind scheme for shallow water equations with time-dependent bottom topography’. Preprint.
Berthon, C. and Marche, F. (2008), ‘A positive preserving high order VFRoe scheme for shallow water equations: A class of relaxation schemes’, SIAM J. Sci. Comput. 30, 25872612.
Berthon, C., Marche, F. and Turpault, R. (2011), ‘An efficient scheme on wet/dry transitions for shallow water equations with friction’, Comput. & Fluids 48, 192201.
Bianco, F., Puppo, G. and Russo, G. (1999), ‘High order central schemes for hyperbolic systems of conservation laws’, SIAM J. Sci. Comput. 21, 294322.
Bollermann, A., Chen, G., Kurganov, A. and Noelle, S. (2013), ‘A well-balanced reconstruction of wet/dry fronts for the shallow water equations’, J. Sci. Comput. 56, 267290.
Bollermann, A., Noelle, S. and Lukáčová-Medvid’ová, M. (2011), ‘Finite volume evolution Galerkin methods for the shallow water equations with dry beds’, Commun. Comput. Phys. 10, 371404.
Bouchut, F. and Morales de Luna, T. (2008), ‘An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment’, M2AN Math. Model. Numer. Anal. 42, 683698.
Bouchut, F. and Zeitlin, V. (2010), ‘A robust well-balanced scheme for multi-layer shallow water equations’, Discrete Contin. Dyn. Syst. Ser. B 13, 739758.
Bryson, S., Epshteyn, Y., Kurganov, A. and Petrova, G. (2011), ‘Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system’, M2AN Math. Model. Numer. Anal. 45, 423446.
Castro Díaz, M. J. and Fernández-Nieto, E. D. (2012), ‘A class of computationally fast first order finite volume solvers: PVM methods’, SIAM J. Sci. Comput. 34, A2173A2196.
Castro Díaz, M. J., Chacón Rebollo, T., Fernández-Nieto, E. D. and Pares, C. (2007), ‘On well-balanced finite volume methods for nonconservative nonhomogeneous hyperbolic systems’, SIAM J. Sci. Comput. 29, 10931126.
Castro Díaz, M. J., Cheng, Y., Chertock, A. and Kurganov, A. (2014), ‘Solving two-mode shallow water equations using finite volume methods’, Commun. Comput. Phys. 16, 13231354.
Castro Díaz, M. J., Kurganov, A. and Morales de Luna, T. (2018), ‘Path-conservative central-upwind schemes for nonconservative hyperbolic systems’. Preprint.
Castro, M. J., LeFloch, P. G., Muñoz-Ruiz, M. L. and Parés, C. (2008), ‘Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes’, J. Comput. Phys. 227, 81078129.
Castro, M. J., Macías, J. and Parés, C. (2001), ‘A -scheme for a class of systems of coupled conservation laws with source term: Application to a two-layer 1-D shallow water system’, M2AN Math. Model. Numer. Anal. 35, 107127.
Castro, M. J., Macías, J., Parés, C., García-Rodríguez, J. A. and Vázquez-Cendón, E. (2004), ‘A two-layer finite volume model for flows through channels with irregular geometry: Computation of maximal exchange solutions: Application to the Strait of Gibraltar’, Commun. Nonlinear Sci. Numer. Simul. 9, 241249.
Castro, M. J., Pardo, A., Parés, C. and Toro, E. F. (2010), ‘On some fast well-balanced first order solvers for nonconservative systems’, Math. Comp. 79(271), 14271472.
Castro, M. J., Pardo Milanés, A. and Parés, C. (2007), ‘Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique’, Math. Models Methods Appl. Sci. 17, 20552113.
Cea, L. and Vázquez-Cendón, M. E. (2012), ‘Unstructured finite volume discretisation of bed friction and convective flux in solute transport models linked to the shallow water equations’, J. Comput. Phys. 231, 33173339.
Cea, L., Garrido, M. and Puertas, J. (2010), ‘Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas’, J. Hydrol. 382, 88102.
Cheng, Y. and Kurganov, A. (2016), ‘Moving-water equilibria preserving central-upwind schemes for the shallow water equations’, Commun. Math. Sci. 14, 16431663.
Cheng, Y., Chertock, A., Herty, M., Kurganov, A. and Wu, T. (2018), ‘A new approach for designing moving-water equilibria preserving schemes for the shallow water equations’. Preprint.
Chertock, A. and Kurganov, A. (2009), On splitting-based numerical methods for convection–diffusion equations. In Numerical Methods for Balance Laws, Vol. 24 of Quaderni di Matematica, Seconda Università Napoli, Caserta, pp. 303343.
Chertock, A., Cui, S., Kurganov, A. and Tong, W. (2015a), ‘Steady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping term’, SIAM J. Numer. Anal. 53, 19872008.
Chertock, A., Cui, S., Kurganov, A. and Wu, T. (2015b), ‘Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms’, Internat. J. Numer. Meth. Fluids 78, 355383.
Chertock, A., Cui, S., Kurganov, A., Özcan, Ş. N. and Tadmor, E. (2018), ‘Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes’, J. Comput. Phys. 358, 3652.
Chertock, A., Doering, C. R., Kashdan, E. and Kurganov, A. (2010), ‘A fast explicit operator splitting method for passive scalar advection’, J. Sci. Comput. 45, 200214.
Chertock, A., Kashdan, E. and Kurganov, A. (2008), Propagation of diffusing pollutant by a hybrid Eulerian–Lagrangian method. In Hyperbolic Problems: Theory, Numerics, Applications (Benzoni-Gavage, S. and Serre, D., eds), Springer, pp. 371379.
Chertock, A., Kurganov, A. and Petrova, G. (2005), Fast explicit operator splitting method: Application to the polymer system. In Finite Volumes for Complex Applications IV (Benkhaldoun, F. et al. , eds), ISTE, pp. 6372.
Chertock, A., Kurganov, A. and Petrova, G. (2009), ‘Fast explicit operator splitting method for convection–diffusion equations’, Internat. J. Numer. Meth. Fluids 59, 309332.
Chertock, A., Kurganov, A., Qu, Z. and Wu, T. (2013), ‘Three-layer approximation of two-layer shallow water equations’, Math. Model. Anal. 18, 675693.
Cockburn, B., Johnson, C., Shu, C.-W. and Tadmor, E. (1998), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Vol. 1697 of Lecture Notes in Mathematics, Springer.
Dal Maso, G., LeFloch, P. G. and Murat, F. (1995), ‘Definition and weak stability of nonconservative products’, J. Math. Pures Appl. (9) 74, 483548.
Darcy, H. (1857), Recherches Expérimentales Relatives au Mouvement de l’Eau dans les Tuyaux, Vol. 1, Mallet-Bachelier.
de Saint-Venant, A. J. C. (1871), ‘Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lits’, CR Acad. Sci. Paris 73, 147154.
Dumbser, M. (2013), ‘A diffuse interface method for complex three-dimensional free surface flows’, Comput. Methods Appl. Mech. Engrg 257, 4764.
Dumbser, M., Hidalgo, A. and Zanotti, O. (2014), ‘High order space–time adaptive ADER–WENO finite volume schemes for non-conservative hyperbolic systems’, Comput. Methods Appl. Mech. Engrg 268, 359387.
Exner, F. M. (1920), Zur Physik der Dünen, Hölder.
Fjordholm, U. S., Mishra, S. and Tadmor, E. (2011), ‘Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography’, J. Comput. Phys. 230, 55875609.
Flamant, A. (1891), Mécanique Appliquée: Hydraulique, Baudry.
Friedrichs, K. O. (1954), ‘Symmetric hyperbolic linear differential equations’, Comm. Pure Appl. Math. 7, 345392.
Gallardo, J. M., Parés, C. and Castro, M. (2007), ‘On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas’, J. Comput. Phys. 227, 574601.
Gallouët, T., Hérard, J.-M. and Seguin, N. (2003), ‘Some approximate Godunov schemes to compute shallow-water equations with topography’, Comput. & Fluids 32, 479513.
Gauckler, P. (1867), Etudes Théoriques et Pratiques sur l’Ecoulement et le Mouvement des Eaux, Gauthier-Villars.
Gerbeau, J.-F. and Perthame, B. (2001), ‘Derivation of viscous Saint-Venant system for laminar shallow water: Numerical validation’, Discrete Contin. Dyn. Syst. Ser. B 1, 89102.
Godlewski, E. and Raviart, P.-A. (1996), Numerical Approximation of Hyperbolic Systems of Conservation Laws, Vol. 118 of Applied Mathematical Sciences, Springer.
Godunov, S. K. (1959), ‘A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics’, Mat. Sb. (N.S.) 47(89), 271306.
Gottlieb, S., Ketcheson, D. and Shu, C.-W. (2011), Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations, World Scientific.
Gottlieb, S., Shu, C.-W. and Tadmor, E. (2001), ‘Strong stability-preserving high-order time discretization methods’, SIAM Rev. 43, 89112.
Grass, A. J. (1981), Sediment Transport by Waves and Currents, Department of Civil Engineering, University College, London.
Guermond, J.-L. and Popov, B. (2016), ‘Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations’, J. Comput. Phys. 321, 908926.
Harten, A. (1989), ‘ENO schemes with subcell resolution’, J. Comput. Phys. 83, 148184.
Harten, A. (1993), Multi-resolution analysis for ENO schemes. In Algorithmic Trends in Computational Fluid Dynamics (Hussaini, M. Y. et al. , eds), Springer, pp. 287302.
Harten, A. and Osher, S. (1987), ‘Uniformly high-order accurate nonoscillatory schemes, I’, SIAM J. Numer. Anal. 24, 279309.
Harten, A., Engquist, B., Osher, S. and Chakravarthy, S. R. (1987), ‘Uniformly high-order accurate essentially nonoscillatory schemes, III’, J. Comput. Phys. 71, 231303.
Harten, A., Lax, P. and van Leer, B. (1983), ‘On upstream differencing and Godunov-type schemes for hyperbolic conservation laws’, SIAM Rev. 25, 3561.
Heinrich, P. (1992), ‘Nonlinear water waves generated by submarine and areal landslides’, J. Waterw. Port Coast. Ocean Eng. 118, 249266.
Higueras, I. and Roldán, T. (2006), Positivity-preserving and entropy-decaying IMEX methods. In Ninth International Conference Zaragoza–Pau on Applied Mathematics and Statistics, Vol. 33 of Monografías del Seminario Matemático García de Galdeano, Prensas de la Universidad Zaragoza, pp. 129136.
Higueras, I., Happenhofer, N., Koch, O. and Kupka, F. (2014), ‘Optimized strong stability preserving IMEX Runge–Kutta methods’, J. Comput. Appl. Math. 272, 116140.
Hu, P., Cao, Z., Pender, G. and Tan, G. (2012), ‘Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China’, J. Hydrol. 464, 4153.
Hundsdorfer, W. and Ruuth, S. J. (2007), ‘IMEX extensions of linear multistep methods with general monotonicity and boundedness properties’, J. Comput. Phys. 225, 20162042.
Jia, H. and Li, K. (2011), ‘A third accurate operator splitting method’, Math. Comput. Modelling 53, 387396.
Jiang, G.-S. and Shu, C.-W. (1996), ‘Efficient implementation of weighted ENO schemes’, J. Comput. Phys. 126, 202228.
Jiang, G.-S. and Tadmor, E. (1998), ‘Nonoscillatory central schemes for multidimensional hyperbolic conservation laws’, SIAM J. Sci. Comput. 19, 18921917.
Jiang, G.-S., Levy, D., Lin, C.-T., Osher, S. and Tadmor, E. (1998), ‘High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws’, SIAM J. Numer. Anal. 35, 21472168.
Jin, S. (2001), ‘A steady-state capturing method for hyperbolic systems with geometrical source terms’, M2AN Math. Model. Numer. Anal. 35, 631645.
Kellerhals, R. (1967), ‘Stable channels with gravel-paved beds’, ASCE Journal of the Waterways and Harbors Division 93, 6384.
Kröner, D. (1997), Numerical Schemes for Conservation Laws, Wiley-Teubner Series Advances in Numerical Mathematics, Wiley.
Kurganov, A. (2006), Well-balanced central-upwind scheme for compressible two-phase flows. In European Conference on Computational Fluid Dynamics: ECCOMAS CFD 2006 (Wesseling, P. et al. , eds), TU Delft.
Kurganov, A. (2016), Central schemes: A powerful black-box solver for nonlinear hyperbolic PDEs. In Handbook of Numerical Methods for Hyperbolic Problems, Vol. 17 of Handbook of Numerical Analysis, Elsevier/North-Holland, pp. 525548.
Kurganov, A. and Levy, D. (2000), ‘Third-order semi-discrete central scheme for conservation laws and convection–diffusion equations’, SIAM J. Sci. Comput. 22, 14611488.
Kurganov, A. and Levy, D. (2002), ‘Central-upwind schemes for the Saint-Venant system’, M2AN Math. Model. Numer. Anal. 36, 397425.
Kurganov, A. and Lin, C.-T. (2007), ‘On the reduction of numerical dissipation in central-upwind schemes’, Commun. Comput. Phys. 2, 141163.
Kurganov, A. and Miller, J. (2014), ‘Central-upwind scheme for Savage–Hutter type model of submarine landslides and generated tsunami waves’, Comput. Methods Appl. Math. 14, 177201.
Kurganov, A. and Petrova, G. (2001), ‘A third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems’, Numer. Math. 88, 683729.
Kurganov, A. and Petrova, G. (2005), ‘Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws’, Numer. Methods Partial Differ. Equations 21, 536552.
Kurganov, A. and Petrova, G. (2007), ‘A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system’, Commun. Math. Sci. 5, 133160.
Kurganov, A. and Petrova, G. (2009), ‘Central-upwind schemes for two-layer shallow equations’, SIAM J. Sci. Comput. 31, 17421773.
Kurganov, A. and Tadmor, E. (2000), ‘New high resolution central schemes for nonlinear conservation laws and convection–diffusion equations’, J. Comput. Phys. 160, 241282.
Kurganov, A. and Tadmor, E. (2002), ‘Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers’, Numer. Methods Partial Differ. Equations 18, 584608.
Kurganov, A., Noelle, S. and Petrova, G. (2001), ‘Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton–Jacobi equations’, SIAM J. Sci. Comput. 23, 707740.
Kurganov, A., Petrova, G. and Popov, B. (2007), ‘Adaptive semi-discrete central-upwind schemes for nonconvex hyperbolic conservation laws’, SIAM J. Sci. Comput. 29, 23812401.
Kurganov, A., Prugger, M. and Wu, T. (2017), ‘Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws’, SIAM J. Sci. Comput. 39, A947A965.
Lagrange, J. L. (1798), Traité de la Résolution des Équations Numériques. Reprinted in Œuvres (1879).
Lax, P. D. (1954), ‘Weak solutions of nonlinear hyperbolic equations and their numerical computation’, Comm. Pure Appl. Math. 7, 159193.
LeFloch, P. G. (2002), Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser.
LeFloch, P. G. (2004), ‘Graph solutions of nonlinear hyperbolic systems’, J. Hyperbolic Differ. Equations 1, 643689.
LeVeque, R. J. (1998), ‘Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm’, J. Comput. Phys. 146, 346365.
LeVeque, R. J. (2002), Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press.
Levy, D., Puppo, G. and Russo, G. (1999), ‘Central WENO schemes for hyperbolic systems of conservation laws’, M2AN Math. Model. Numer. Anal. 33, 547571.
Levy, D., Puppo, G. and Russo, G. (2000), ‘Compact central WENO schemes for multidimensional conservation laws’, SIAM J. Sci. Comput. 22, 656672.
Levy, D., Puppo, G. and Russo, G. (2002), ‘A fourth-order central WENO scheme for multidimensional hyperbolic systems of conservation laws’, SIAM J. Sci. Comput. 24, 480506.
Li, J. and Chen, G. (2006), ‘The generalized Riemann problem method for the shallow water equations with bottom topography’, Internat. J. Numer. Methods Engrg 65, 834862.
Li, S. and Duffy, C. (2011), ‘Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers’, Water Resour. Res. 47, W03508.
Lie, K.-A. and Noelle, S. (2003a), ‘An improved quadrature rule for the flux-computation in staggered central difference schemes in multidimensions’, J. Sci. Comput. 63, 15391560.
Lie, K.-A. and Noelle, S. (2003b), ‘On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws’, SIAM J. Sci. Comput. 24, 11571174.
Liu, X., Albright, J., Epshteyn, Y. and Kurganov, A. (2018), ‘Well-balanced positivity preserving central-upwind scheme with a novel wet/dry reconstruction on triangular grids for the Saint-Venant system’. Submitted.
Liu, X.-D. and Osher, S. (1996), ‘Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes, I’, SIAM J. Numer. Anal. 33, 760779.
Liu, X.-D. and Tadmor, E. (1998), ‘Third order nonoscillatory central scheme for hyperbolic conservation laws’, Numer. Math. 79, 397425.
Liu, X.-D., Osher, S. and Chan, T. (1994), ‘Weighted essentially non-oscillatory schemes’, J. Comput. Phys. 115, 200212.
Lukáčová-Medvid’ová, M., Morton, K. W. and Warnecke, G. (2004), ‘Finite volume evolution Galerkin methods for hyperbolic systems’, SIAM J. Sci. Comput. 26, 130.
Lukáčová-Medvid’ová, M., Noelle, S. and Kraft, M. (2007), ‘Well-balanced finite volume evolution Galerkin methods for the shallow water equations’, J. Comput. Phys. 221, 122147.
Macías, J., Pares, C. and Castro, M. J. (1999), ‘Improvement and generalization of a finite element shallow-water solver to multi-layer systems’, Internat. J. Numer. Methods Fluids 31, 10371059.
Manning, R. (1891), ‘On the flow of water in open channel and pipes’, Transactions of the Institution of Civil Engineers of Ireland 20, 161207.
Marchuk, G. I. (1988), Metody Rasshchepleniya [Splitting Methods] (in Russian), Nauka.
Marchuk, G. I. (1990), Splitting and alternating direction methods. In Finite Difference Methods, I: Solution of Equations in ℝ N , Vol. 1 of Handbook of Numerical Analysis, North-Holland, pp. 197462.
Masella, J.-M., Faille, I. and Gallouët, T. (1999), ‘On an approximate Godunov scheme’, Internat. J. Comput. Fluid Dyn. 12, 133149.
Mignotte, M. and Stefanescu, D. (2002), ‘On an estimation of polynomial roots by Lagrange’. Technical report 025/2002, IRMA Strasbourg.
Morales de Luna, T., Castro Díaz, M. J., Parés Madroñal, C. and Fernández Nieto, E. D. (2009), ‘On a shallow water model for the simulation of turbidity currents’, Commun. Comput. Phys. 6, 848882.
Muñoz-Ruiz, M. L. and Parés, C. (2011), ‘On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws’, J. Sci. Comput. 48, 274295.
Muñoz-Ruiz, M. L. and Parés Madroñal, C. (2012), Properties of path-conservative schemes for hyperbolic systems of balance laws. In Hyperbolic Problems: Theory, Numerics and Applications, 2, Vol. 18 of Series in Contemporary Applied Mathematics, World Scientific, pp. 593600.
Murillo, J. and García-Navarro, P. (2010), ‘An Exner-based coupled model for two-dimensional transient flow over erodible bed’, J. Comput. Phys. 229, 87048732.
Nessyahu, H. and Tadmor, E. (1990), ‘Nonoscillatory central differencing for hyperbolic conservation laws’, J. Comput. Phys. 87, 408463.
Noelle, S., Pankratz, N., Puppo, G. and Natvig, J. R. (2006), ‘Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows’, J. Comput. Phys. 213, 474499.
Noelle, S., Xing, Y. and Shu, C.-W. (2007), ‘High-order well-balanced finite volume WENO schemes for shallow water equation with moving water’, J. Comput. Phys. 226, 2958.
Parés, C. (2009), Path-conservative numerical methods for nonconservative hyperbolic systems. In Numerical Methods for Balance Laws, Vol. 24 of Quaderni di Matematica, Seconda Università Napoli, Caserta, pp. 67121.
Parés, C. and Castro, M. (2004), ‘On the well-balance property of Roe’s method for nonconservative hyperbolic systems: Applications to shallow-water systems’, M2AN Math. Model. Numer. Anal. 38, 821852.
Pareschi, L. and Russo, G. (2001), Implicit–explicit Runge–Kutta schemes for stiff systems of differential equations. In Recent Trends in Numerical Analysis, Vol. 3 of Advances in the Theory of Computational Mathematics, Nova, pp. 269288.
Pareschi, L. and Russo, G. (2005), ‘Implicit–Explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation’, J. Sci. Comput. 25, 129155.
Perthame, B. and Simeoni, C. (2001), ‘A kinetic scheme for the Saint-Venant system with a source term’, Calcolo 38, 201231.
Pritchard, D. and Hogg, A. (2002), ‘On sediment transport under dam-break flow’, J. Fluid Mech. 473, 265274.
Ricchiuto, M. (2015), ‘An explicit residual based approach for shallow water flows’, J. Comput. Phys. 280, 306344.
Ricchiuto, M. and Bollermann, A. (2009), ‘Stabilized residual distribution for shallow water simulations’, J. Comput. Phys. 228, 10711115.
Richtmyer, R. D. and Morton, K. W. (1994), Difference Methods for Initial-Value Problems, second edition, Robert E. Krieger.
Roe, P. L. (1981), ‘Approximate Riemann solvers, parameter vectors, and difference schemes’, J. Comput. Phys. 43, 357372.
Rusanov, V. V. (1961), ‘The calculation of the interaction of non-stationary shock waves with barriers’, Ž. Vyčisl. Mat. i Mat. Fiz. 1, 267279.
Russo, G. (2005), Central schemes for conservation laws with application to shallow water equations. In Trends and Applications of Mathematics to Mechanics (Rionero, S. and Romano, G., eds), Springer, pp. 225246.
Russo, G. and Khe, A. (2010), High order well-balanced schemes based on numerical reconstruction of the equilibrium variables. In WASCOM 2009: 15th Conference on Waves and Stability in Continuous Media, World Scientific, pp. 230241.
Schijf, J. B. and Schonfeld, J. C. (1953), Theoretical considerations on the motion of salt and fresh water. In Minnesota International Hydraulics Convention, pp. 321333.
Shi, J., Hu, C. and Shu, C.-W. (2002), ‘A technique of treating negative weights in WENO schemes’, J. Comput. Phys. 175, 108127.
Shirkhani, H., Mohammadian, A., Seidou, O. and Kurganov, A. (2016), ‘A well-balanced positivity-preserving central-upwind scheme for shallow water equations on unstructured quadrilateral grids’, Comput. & Fluids 126, 2540.
Shu, C.-W. (1988), ‘Total-variation-diminishing time discretizations’, SIAM J. Sci. Comput. 6, 10731084.
Shu, C.-W. (2003), ‘High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD’, Internat. J. Comput. Fluid Dyn. 17, 107118.
Shu, C.-W. (2009), ‘High order weighted essentially nonoscillatory schemes for convection dominated problems’, SIAM Rev. 51, 82126.
Shu, C.-W. and Osher, S. (1988), ‘Efficient implementation of essentially non-oscillatory shock-capturing schemes’, J. Comput. Phys. 77, 439471.
Simpson, G. and Castelltort, S. (2006), ‘Coupled model of surface water flow, sediment transport and morphological evolution’, Comput. Geosci. 32, 16001614.
Song, L., Zhou, J., Guo, J., Zou, Q. and Liu, Y. (2011), ‘A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain’, Adv. Water Resour. 34, 915932.
Strang, G. (1968), ‘On the construction and comparison of difference schemes’, SIAM J. Numer. Anal. 5, 506517.
Sweby, P. K. (1984), ‘High resolution schemes using flux limiters for hyperbolic conservation laws’, SIAM J. Numer. Anal. 21, 9951011.
Tang, H., Tang, T. and Xu, K. (2004), ‘A gas-kinetic scheme for shallow-water equations with source terms’, Z. Angew. Math. Phys. 55, 365382.
Tingsanchali, T. and Chinnarasri, C. (2001), ‘Numerical modelling of dam failure due to flow overtopping’, Hydrolog. Sci. J. 46, 113130.
Toro, E. F. (2009), Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, third edition, Springer.
Vabishchevich, P. N. (2014), Additive Operator-Difference Schemes: Splitting Schemes, De Gruyter.
van Leer, B. (1979), ‘Towards the ultimate conservative difference scheme, V: A second-order sequel to Godunov’s method’, J. Comput. Phys. 32, 101136.
Watts, P. (2000), ‘Tsunami features of solid block underwater landslides’, J. Waterw. Port Coast. Ocean Eng. 126, 144152.
Wu, W. and Wang, S. S. (2007), ‘One-dimensional modeling of dam-break flow over movable beds’, J. Hydraul. Eng. 133, 4858.
Xia, J., Lin, B., Falconer, R. and Wang, G. (2010), ‘Modelling dam-break flows over mobile beds using a 2D coupled approach’, Adv. Water Resour. 33, 171183.
Xing, Y., Shu, C.-W. and Noelle, S. (2011), ‘On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations’, J. Sci. Comput. 48, 339349.
Xiong, T., Shu, C.-W. and Zhang, M. (2012), ‘WENO scheme with subcell resolution for computing nonconservative Euler equations with applications to one-dimensional compressible two-medium flows’, J. Sci. Comput. 53, 222247.
Yue, Z., Cao, Z., Li, X. and Che, T. (2008), ‘Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution’, Sci. China Ser. G: Phys. Mech. Astron. 51, 14271438.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed