Achtsis, N. and Nuyens, D. (2012), A component-by-component construction for the trigonometric degree. In Monte Carlo and Quasi-Monte Carlo Methods 2010 (Plaskota, L. and Woźniakowski, H., eds), Springer, pp. 235–253.
Acworth, P., Broadie, M. and Glasserman, P. (1998), A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In Monte Carlo and Quasi-Monte Carlo Methods 1996 (Hellekalek, P, Larcher, G, Niederreiter, H and Zinterhof, P, eds), Springer, pp. 1–18.
Adler, R. J. (1981), The Geometry of Random Fields, Wiley.
Aistleitner, C. (2011), ‘Covering numbers, dyadic chaining and discrepancy’, J. Complexity 27, 531–540.
Aistleitner, C. and Hofer, M. (2012), ‘Probabilistic error bounds for the discrepancy of mixed sequences’, Monte Carlo Methods Appl. 18, 181–200.
Antonov, I. A. and Saleev, V. M. (1979), ‘An effective method for the computation of λP_{τ}-sequences’, Ž. Vyčisl. Mat. i Mat. Fiz. 19, 243–245, 271.
Aronszajn, N. (1950), ‘Theory of reproducing kernels’, Trans. Amer. Math. Soc. 68, 337–404.
Atanassov, E. I. (2004 a), Efficient CPU-specific algorithm for generating the generalized Faure sequences. In Large-Scale Scientific Computing, Vol. 2907 of Lecture Notes in Computer Science, Springer, pp. 121–127.
Atanassov, E. I. (2004 b), ‘On the discrepancy of Halton sequences’, Math. Balkanica 18, 15–32.
Bakhvalov, N. S. (1959), ‘On approximate computation of integrals’ (in Russian), Vestnik MGU, Ser. Math. Mech. Astron. Phys. Chem. 4, 3–18.
Baldeaux, J. (2012), Scrambled polynomial lattice rules for infinite-dimensional integration. In Monte Carlo and Quasi-Monte Carlo Methods 2010 (Plaskota, L. and Woźniakowski, H., eds), Springer, pp. 255–263.
Baldeaux, J. and Dick, J. (2009), ‘QMC rules of arbitrary high order: Reproducing kernel Hilbert space approach’, Constr. Approx. 30, 495–527.
Baldeaux, J. and Dick, J. (2011), ‘A construction of polynomial lattice rules with small gain coefficients’, Numer. Math. 119, 271–297.
Baldeaux, J. and Gnewuch, M. (2013), Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition. Submitted.
Baldeaux, J., Dick, J., Greslehner, J. and Pillichshammer, F. (2011), ‘Construction algorithms for higher order polynomial lattice rules’, J. Complexity 27, 281–299.
Baldeaux, J., Dick, J., Leobacher, G, Nuyens, D. and Pillichshammer, F. (2012), ‘Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules’, Numer. Algorithms 59, 403–431.
Barth, A., Schwab, C. and Zollinger, N. (2011), ‘Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients’, Numer. Math. 119, 123–161.
Bratley, P. and Fox, B. L. (1988), ‘Algorithm 659: Implementing Sobol's quasirandom sequence generator’, ACM Trans. Math. Softw. 14, 88–100.
Bratley, P, Fox, B. L., and Niederreiter, H. (1992), ‘Implementation and tests of low-discrepancy sequences’, ACM Trans. Model. Comput. Simul 2, 195–213.
Bungartz, H. and Griebel, M. (2004), Sparse grids. In Acta Numerica, Vol. 13, Cambridge University Press, pp. 147–269.
Caflisch, R. E., Morokoff, W. and Owen, A. (1997), ‘Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension’, J. Comput. Finance 1, 27–46.
Charrier, J., Scheichl, R. and Teckentrup, A. L. (2011), Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. Preprint 2/11, Bath Institute For Complex Systems.
Chazelle, B. (2000), The Discrepancy Method: Randomness and Complexity, Cambridge University Press.
Chrestenson, H E. (1955), ‘A class of generalized Walsh functions’, Pacific J. Math. 5, 17–31.
Chung, K. L. (1974), A Course in Probability Theory, second edition, Vol. 21 of Probability and Mathematical Statistics, Academic Press.
Cliffe, K. A., Giles, M. B., Scheichl, R. and Teckentrup, A. L. (2011), ‘Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients’, Comput. Vis. Sci. 14, 3–15.
Cools, R. (1997), Constructing cubature formulae: The science behind the art. In Acta Numerica, Vol. 6, Cambridge University Press, pp. 1–54.
Cools, R. and Lyness, J. N. (2001), ‘Three- and four-dimensional if-optimal lattice rules of moderate trigonometric degree’, Math. Comp. 70, 1549–1567.
Cools, R. and Nuyens, D. (2008), A Belgian view on lattice rules. In Monte Carlo and Quasi-Monte Carlo Methods 2006 (Keller, A., Heinrich, S. and Niederreiter, H., eds), Springer, pp. 3–21.
Cools, R., Kuo, F. Y. and Nuyens, D. (2006), ‘Constructing embedded lattice rules for multivariate integration’, SIAM J. Sci. Comput. 28, 2162–2188.
Cools, R., Kuo, F. Y. and Nuyens, D. (2010), ‘Constructing lattice rules based on weighted degree of exactness and worst case error’, Computing 87, 63–89.
Creutzig, J., Dereich, S., Müller-Gronbach, T. and Ritter, K. (2009), ‘Infinite- dimensional quadrature and approximation of functions’, Found. Comp. Math. 9, 391–429.
Davis, P. J. and Rabinowitz, P. (1984), Methods of Numerical Integration, second edition, Academic.
Devroye, L. (1986), Nonuniform Random Variate Generation, Springer.
Dick, J. (2004), ‘On the convergence rate of the component-by-component construction of good lattice rules’, J. Complexity 20, 493–522.
Dick, J. (2007 a), ‘Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions’, SIAM J. Numer. Anal. 45, 2141–2176.
Dick, J. (2007 b), ‘The construction of extensible polynomial lattice rules with small weighted star discrepancy’, Math. Comp. 76, 2077–2085.
Dick, J. (2008), ‘Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order’, SIAM J. Numer. Anal. 46, 1519–1553.
Dick, J. (2009 a), ‘The decay of the Walsh coefficients of smooth functions’, Bull. Aust. Math. Soc. 80, 430–453.
Dick, J. (2009 b), On Quasi-Monte Carlo rules achieving higher order convergence. In Monte Carlo and Quasi-Monte Carlo Methods 2008 (L'Ecuyer, P. and Owen, A. B., eds), Springer, pp. 73–96.
Dick, J. (2011 a), ‘Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands’, Ann. Statist. 39, 1372–1398.
Dick, J. (2011 b), ‘Quasi-Monte Carlo numerical integration on ℝ^{s}: Digital nets and worst-case error’, SIAM J. Numer. Anal. 49, 1661–1691.
Dick, J. (2012), ‘Random weights, robust lattice rules and the geometry of the cbcrc algorithm’, Numer. Math. 122, 443–467.
Dick, J. and Baldeaux, J. (2009), Equidistribution properties of generalized nets and sequences. In Monte Carlo and Quasi-Monte Carlo Methods 2008 (L'Ecuyer, P. and Owen, A. B., eds), Springer, pp. 305–322.
Dick, J. and Gnewuch, M. (2013), Infinite-dimensional integration in weighted Hilbert spaces: Anchored decompositions, optimal deterministic algorithms, and higher order convergence. Submitted.
Dick, J. and Kritzer, P. (2010), ‘Duality theory and propagation rules for generalized digital nets’, Math. Comp. 79, 993–1017.
Dick, J. and Kuo, F. Y. (2004 a), ‘Reducing the construction cost of the component-by-component construction of good lattice rules’, Math. Comp. 73, 1967–1988.
Dick, J. and Kuo, F. Y. (2004 b), Constructing good lattice rules with millions of points. In Monte Carlo and Quasi-Monte Carlo Methods 2002 (Niederreiter, H., ed.), Springer, pp. 181–197.
Dick, J. and Pillichshammer, F. (2005), ‘Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces’, J. Complexity 21, 149–195.
Dick, J. and Pillichshammer, F. (2007), ‘strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules’, J. Complexity 23, 436–453.
Dick, J. and Pillichshammer, F. (2010), Digital Nets and Sequences, Cambridge University Press.
Dick, J., Kritzer, P., Leobacher, G. and Pillichshammer, F. (2007 a), ‘Constructions of general polynomial lattice rules based on the weighted star discrepancy’, Finite Fields Appl. 13, 1045–1070.
Dick, J., Kritzer, P., Pillichshammer, F. and Schmid, W. C. (2007 b), ‘On the existence of higher order polynomial lattices based on a generalized figure of merit’, J. Complexity 23, 581–593.
Dick, J., Kuo, F. Y., Pillichshammer, F. and Sloan, I. H. (2005), ‘Construction algorithms for polynomial lattice rules for multivariate integration’, Math. Comp. 74, 1895–1921.
Dick, J., Larcher, G., Pillichshammer, F. and Woźniakowski, H. (2011), ‘Exponential convergence and tractability of multivariate integration for Korobov spaces’, Math. Comp. 80, 905–930.
Dick, J., Nuyens, D. and Pillichshammer, F. (2013), Lattice rules for nonperiodic smooth integrands. Submitted.
Dick, J., Pillichshammer, F., and Waterhouse, B. J. (2008), ‘The construction of good extensible rank-1 lattices’, Math. Comp. 77, 2345–2374.
Dick, J., Sloan, I. H., Wang, X. and Woźniakowski, H. (2006), ‘Good lattice rules in weighted Korobov spaces with general weights’, Numer. Math. 103, 63–97.
Digital Library of Mathematical Functions, National Institute of Standards and Technology.
Doerr, B., Gnewuch, M., Kritzer, P. and Pillichshammer, F. (2008), ‘Component-by-component construction of low-discrepancy point sets of small size’, Monte Carlo Methods Appl. 14, 129–149.
Doerr, B., Gnewuch, M. and Wahlström, M. (2009), Implementation of a component-by-component algorithm to generate small low-discrepancy samples. In Monte Carlo and Quasi-Monte Carlo Methods 2008 (L'Ecuyerand, P.Owen, A. B., eds), Springer, pp. 323–338.
Doerr, B., Gnewuch, M. and Wahlstrom, M. (2010), ‘Algorithmic construction of low-discrepancy point sets via dependent randomized rounding’, J. Complexity 26, 490–507.
Drmota, M. and Tichy, R. F. (1997), Sequences, Discrepancies and Applications, Vol. 1651 of Lecture Notes in Mathematics, Springer.
Fang, K. T. and Wang, Y. (1994), Number-Theoretic Methods in Statistics, Chapman & Hall.
Faure, H. (1982), ‘Discrepance de suites associées à unsysteme de numeration (en dimensions)’, Acta Arith. 41, 337–351.
Fine, N. J. (1949), ‘On the Walsh functions’, Trans. Amer. Math. Soc. 65, 372–414.
Fox, B. L. (1986), ‘Algorithm 647: Implementation and relative efficiency of quasir-andom sequence generators, ACM Trans. Math. Softw. 12, 362–376.
Ghanem, R. G. and Spanos, P. D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer.
Giles, M. B. (2008), ‘Multilevel Monte Carlo path simulation’, Oper. Res. 56, 607–617.
Giles, M., Kuo, F. Y., Sloan, I. H. and Waterhouse, B. J. (2008), ‘Quasi-Monte Carlo for finance applications’, ANZIAM J. 50 (CTAC2008), C308–C323.
Gnewuch, M. (2008), ‘Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy, J. Complexity 24, 154–172.
Gnewuch, M. (2009), ‘On probabilistic results for the discrepancy of a hybrid-Monte Carlo sequence, J. Complexity 23, 312–317.
Gnewuch, M. (2012 a), ‘Weighted geometric discrepancies and numerical integration on reproducing kernel Hilbert spaces’, J. Complexity 28, 2–17.
Gnewuch, M. (2012 b), ‘Infinite-dimensional integration on weighted Hilbert spaces’, Math. Comp. 280, 2175–2205.
Gnewuch, M. (2013), Lower error bounds for randomized multilevel and changing dimension algorithms. In Monte Carlo and Quasi-Monte Carlo Methods 2012 (Dick, J., Kuo, F. Y., Peters, G. W. and Sloan, I. H., eds), Springer, to appear.
Gnewuch, M. and Rosca, A. V. (2009), ‘On G-discrepancy and mixed Monte Carlo and quasi-Monte Carlo sequences’, Acta Univ. Apulensis Math. Inform. 18, 97–110.
Gnewuch, M., Mayer, S. and Ritter, K. (2013), On weighted Hilbert spaces and integration of functions of infinitely many variables. Submitted.
Gnewuch, M., Srivastav, A. and Winzen, C. (2009), ‘Finding optimal volume subin-tervals with/k-points and calculating the star discrepancy are NP-hard problems’, J. Complexity 25, 115–127.
Gnewuch, M., Wahlstriom, M. and Winzen, C. (2012), ‘A new randomized algorithm to approximate the star discrepancy based on threshold accepting, SIAM J. Numer. Anal. 50, 781–807.
Goda, T. and Dick, J. (2013), Construction of interlaced scrambled polynomial lattice rules of arbitrary high order. Submitted.
Graham, I. G., Kuo, F. Y., Nichols, J., Scheichl, R., Schwab, C. and Sloan, I. H. (2013), Quasi-Monte Carlo finite element methods for elliptic PDEs with log-normal random coefficients. In preparation.
Graham, I. G., Kuo, F. Y., Nuyens, D., Scheichl, R. and Sloan, I. H. (2011), ‘Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications, J. Comput. Phys. 230, 3668–3694.
Griebel, M. (2006), Sparse grids and related approximation schemes for higher dimensional problems. In Foundations of Computational Mathematics, Santander, 2005, Cambridge University Press, pp. 106–161.
Griebel, M., Kuo, F. Y. and Sloan, I. H. (2013), ‘The smoothing effect of integration in ℝ^{d} and the ANOVA decomposition’, Math. Comp. 82, 383–400.
Halton, J. H. (1960), ‘On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2, 84–90.
Hammersley, J. M. and Handscomb, D. C. (1964), Monte Carlo Methods, Methuen.
Hansen, T., Mullen, G. L. and Niederreiter, H. (1993), ‘Good parameters for a class of node sets in quasi-Monte Carlo integration, Math. Comp. 61, 225–234.
Heinrich, S. (1998), ‘Monte Carlo complexity of global solution of integral equations, J. Complexity 14, 151–175.
Heinrich, S. and Sindambiwe, E. (1999), ‘Monte Carlo complexity of parametric integration, J. Complexity 15, 317–341.
Heinrich, S., Hickernell, F. and Yue, R. X. (2004), ‘Optimal quadrature for Haar wavelet spaces’, Math. Comp. 73, 259–277.
Heinrich, S., Novak, E., Wasilkowski, G. W., Woźniakowski, H. (2001), ‘The inverse of the star-discrepancy depends linearly on the dimension’, Acta Arith. 96, 279–302.
Hickernell, F. J. (1996 a), ‘Quadrature error bounds with applications to lattice rules’, SIAM J. Numer. Anal. 33, 1995–2016.
Erratum: ‘Quadrature error bounds with applications to lattice rules’, SIAM J. Numer. Anal. 34, 853–866 (1997).
Hickernell, F. J. (1996 b), ‘The mean square discrepancy of randomized nets’, ACM Trans. Modeling Comput. Simul. 6, 274–296.
Hickernell, F. J. (1998 a), ‘A generalized discrepancy and quadrature error bound’, Math. Comp. 67, 299–322.
Hickernell, F. J. (1998 b), Lattice rules: How well do they measure up? In Random and Quasi-Random Point Sets (Hellekalek, P. and Larcher, G., eds), Springer, pp. 109–166.
Hickernell, F. J. (1999), ‘Goodness-of-fit statistics, discrepancies and robust designs’, Statist. Probab. Lett. 44, 73–78.
Hickernell, F. J. (2002), Obtaining O(N^{−2+ε}) convergence for lattice quadrature rules. In Monte Carlo and Quasi-Monte Carlo Methods 2000 (Fang, K.T., Hickernell, F. J. and Niederreiter, H., eds), Springer, pp. 274–289.
Hickernell, F. J. and Hong, H. S. (2002), Quasi-Monte Carlo methods and their randomisations. In Applied Probability: AMS/IP Studies in Advanced Mathematics, Vol. 26 (Chan, R., Kwok, Y.-K., Yao, D. and Zhang, Q., eds), AMS, pp. 59–77.
Hickernell, F. J. and Niederreiter, H. (2003), ‘The existence of good extensible rank-1 lattices’, J. Complexity 19, 286–300.
Hickernell, F. J. and Wang, X. (2002), ‘The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension’, Math. Comp. 71, 1641–1661.
Hickernell, F. J. and Woźniakowski, H. (2000), ‘Integration and approximation in arbitrary dimensions’, Adv. Comput. Math. 12, 25–58.
Hickernell, F. J. and Woźniakowski, H. (2001), ‘Tractability of multivariate integration for periodic functions’, J. Complexity 17, 660–682.
Hickernell, F. J. and Yue, R. X. (2000), ‘The mean square discrepancy of scrambled (t, s)-sequences’, SIAM J. Numer. Anal. 38, 1089–1112.
Hickernell, F. J., Hong, H. S., Ecuyer, P. L., and Lemieux, C. (2000), ‘Extensible lattice sequences for quasi-Monte Carlo quadrature’, SIAM J. Sci. Comput. 22, 1117–1138.
Hickernell, F. J., Kritzer, P., Kuo, F. Y. and Nuyens, D. (2012), ‘Weighted compound integration rules with higher order convergence for all N’, Numer. Algorithms 59, 161–183.
Hickernell, F. J., Lemieux, C. and Owen, A. B. (2005), ‘Control variates for quasi-Monte Carlo, with comments by Pierre L Ecuyer and Xiao-Li Meng and a rejoinder by the authors. Statist. Sci. 20, 1–31.
Hickernell, F., Muiller-Gronbach, T., Niu, B. and Ritter, K. (2010), ‘Monte Carlo algorithms for infinite-dimensional integration on ℝ^{N}’, J. Complexity 26, 229–254.
Hinrichs, A. (2004), ‘Covering numbers, Vapnik-Červonenkis classes and bounds for the star-discrepancy’, J. Complexity 20, 477–483.
Hinrichs, A., Pillichshammer, F. and Schmid, W. C. (2008), ‘Tractability properties of the weighted star discrepancy’, J. Complexity 24, 134–143.
Hlawka, E. (1961), ‘Funktionen von beschränkter Variation in der Theorie der Gleichverteilung’, Ann. Mat. Pura Appl. 54, 325–333.
Hlawka, E. (1962), ‘Zur angeniaherten Berechnung mehrfacher Integrale’, Monatsh. Math. 66, 140–151.
Hofer, R. and Kritzer, P. (2011), ‘On hybrid sequences built from Niederreiter-Halton sequences and Kronecker sequences’, Bull. Aust. Math. Soc. 84, 238–254.
Hofer, R. and Larcher, G. (2010), ‘On existence and discrepancy of certain digital Niederreiter-Halton sequences’, Acta Arith. 141, 369–394.
Hofer, R. and Larcher, G. (2012), ‘Metrical results on the discrepancy of Halton-Kronecker sequences’, Math. Z. 271, 1–11.
Hofer, R. and Niederreiter, H. (2013), ‘A construction of (t, s)-sequences with finite-row generating matrices using global function fields’, Finite Fields Appl. 21, 97–110.
Hofer, R. and Pirsic, G. (2011), ‘An explicit construction of finite-row digital (0,s)-sequences’, Unif. Distrib. Theory 6, 13–30.
Hofer, R., Kritzer, P., Larcher, G. and Pillichshammer, F. (2009), ‘Distribution properties of generalized van der Corput-Halton sequences and their subsequences’, Int. J. Number Theory 5, 719–746.
Härmann, W., Leydold, J. and Derflinger, G. (2010), Automatic Nonuniform Random Variate Generation, Springer.
Joe, S. (2004), Component by component construction of rank-1 lattice rules having O(n−1(ln(n))d) star discrepancy. In Monte Carlo and Quasi-Monte Carlo Methods 2002 (Niederreiter, H., ed.), Springer, pp. 293–298.
Joe, S. (2006), Construction of good rank-1 lattice rules based on the weighted star discrepancy. In Monte Carlo and Quasi-Monte Carlo Methods 2004 (Niederreiter, H. and Talay, D., eds), Springer, pp. 181–196.
Joe, S. and Kuo, F. Y. (2008), ‘Constructing Sobol' sequences with better two-dimensional projection’, SIAM J. Sci. Comput. 30, 2635–2654.
Kämmerer, L., Kunis, S. and Potts, D. (2012), ‘Interpolation lattices for hyperbolic cross trigonometric polynomials’, J. Complexity 28, 76–92.
Keller, A. (2006), Myths of computer graphics. In Monte Carlo and Quasi-Monte Carlo Methods 2004 (Niederreiter, H. and Talay, D., eds), Springer, pp. 217–243.
Keller, A. (2013), Quasi-Monte Carlo image synthesis in a nutshell. In Monte Carlo and Quasi-Monte Carlo Methods 2012 (Dick, J., Kuo, F. Y., Peters, G. W. and Sloan, I. H., eds), Springer, to appear.
Koksma, J. F. (1942/1943), ‘Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1’, Mathematica B (Zutphen) 11, 7–11.
Korobov, N. M. (1959), ‘The approximate computation of multiple integrals’ (in Russian), Dokl. Akad. Nauk SSSR 124, 1207–1210.
Korobov, N. M. (1963), Number-Theoretic Methods in Approximate Analysis, Fiz-matgiz.
Korobov, N. M. (1982), ‘On the calculation of optimal coefficients’ (in Russian), Dokl. Akad. Nauk SSSR 267, 289–292.
Kritzer, P. and Pillichshammer, F. (2007), ‘Constructions of general polynomial lattices for multivariate integration’, Bull. Austral. Math. Soc. 76, 93–110.
Kuipers, L. and Niederreiter, H. (1974), Uniform Distribution ofSequences, Wiley.
Kuo, F. Y. (2003), ‘Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces’, J. Complexity 19, 301–320.
Kuo, F. Y. and Joe, S. (2002), ‘Component-by-component construction of good lattice rules with a composite number of points’, J. Complexity 18, 943–976.
Kuo, F. Y. and Joe, S. (2003), ‘Component-by-component construction of good intermediate-rank lattice rules’, SIAM J. Numer. Anal. 41, 1465–1486.
Kuo, F. Y. and Sloan, I. H. (2005), ‘Lifting the curse of dimensionality’, Not. Amer. Math. Soc. 52, 1320–1328.
Kuo, F. Y., M, W. T.. Dunsmuir, Sloan, I. H., Wand, M. P., Womersley, R. S. (2008 a), ‘Quasi-Monte Carlo for highly structured generalised response models’, Method. Comput. Appl. Probab. 10, 239–275.
Kuo, K. Y., Schwab, C. and Sloan, I. H. (2011), ‘Quasi-Monte Carlo methods for high-dimensional integration: The standard (weighted Hilbert space) setting and beyond’, ANZIAM J. 53, 1–37.
Kuo, F. Y., Schwab, C. and Sloan, I. H. (2012), Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients, SIAM J. Numer. Anal. 50, 3351–3374.
Kuo, F. Y., Schwab, C. and Sloan, I. H. (2013), Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. Submitted.
Kuo, F. Y., Sloan, I. H., Wasilkowski, G. W., and Waterhouse, B. J. (2010 a), Randomly shifted lattice rules with the optimal rate of convergence for unbounded integrands’, J. Complexity 26, 135–160.
Kuo, F. Y., Sloan, I. H., Wasilkowski, G. W. and Woźniakowski, H. (2010 b), ‘On decompositions of multivariate functions’, Math. Comp. 79, 953–966.
Kuo, F. Y., Sloan, I. H., Wasilkowski, G. W. and Woźniakowski, H. (2010 c), ‘Liberating the dimension’, J. Complexity 26, 422–454.
Kuo, F. Y., Sloan, I. H., and Woźniakowski, H. (2006 a), Lattice rules for multivariate approximation in the worst case setting. In Monte Carlo and Quasi-Monte Carlo Methods 2004 (Niederreiter, H. and Talay, D., eds), Springer, pp. 289–330.
Kuo, F. Y., Sloan, I. H. and Woźniakowski, H. (2007), ‘Periodization strategy may fail in high dimensions’, Numer. Algorithms 46, 369–391.
Kuo, F. Y., Sloan, I. H., and Woźniakowski, H. (2008 b), ‘Lattice rule algorithms for multivariate approximation in the average case setting’, J. Complexity 24, 283–323.
Kuo, F. Y., Wasilkowski, G. W., and Waterhouse, B. J. (2006 b), ‘Randomly shifted lattice rules for unbounded integrals’, J. Complexity 22, 630–651.
Kuo, F. Y., Wasilkowski, G. W., and Woźniakowski, H. (2009), ‘Lattice algorithms for multivariate ∞ approximation in the worst case setting’, Constr. Approx. 30, 475–493.
Larcher, G. and Traunfellner, C. (1994), ‘On the numerical integration of Walsh series by number-theoretic methods’, Math. Comp. 63, 277–291.
Larcher, G., Lauß, A., Niederreiter, H. and Schmid, W. C. (1996 a), ‘Optimal polynomials for (t, m, s)-nets and numerical integration of multivariate Walsh series’, SIAM J. Numer. Anal. 33, 2239–2253.
Larcher, G., Schmid, W. C. and Wolf, R. (1994), ‘Representation of functions as Walsh series to different bases and an application to the numerical integration of high-dimensional Walsh series’, Math. Comp. 63, 701–716.
Larcher, G., Schmid, W. C. and Wolf, R. (1996 b), ‘Quasi-Monte Carlo methods for the numerical integration of multivariate Walsh series: Monte Carlo and quasi-Monte Carlo methods’, Math. Comput. Modelling 23, 55–67.
Laurie, D. (1996), ‘Periodizing transformations for numerical integration’, J. Comput. Appl. Math. 66, 337–344.
L'Ecuyer, P. (2004), Quasi-Monte Carlo methods in finance. In Proc. 2004 Winter Simulation Conference (Ingalls, R. G., Rossetti, M. D., Smith, J. S. and Peters, B. A., eds), IEEE Computer Society Press, pp. 1645–1655.
Ecuyer, P. L' and Lemieux, C. (2000), ‘Variance reduction via lattice rules’, Management Sci. 46, 1214–1235.
L'Ecuyer, P. and Munger, D. (2012), On figures of merit for randomly shifted lattice rules. In Monte Carlo and Quasi-Monte Carlo Methods 2010 (Plaskota, L. and Woźniakowski, H., eds), Springer, pp. 133–159.
L'Ecuyer, P., Munger, D. and Tuffin, B. (2010), ‘On the distribution of integration error by randomly-shifted lattice rules’. Electron. J. Stat. 4, 950–993.
Lemieux, C. (2009), Monte Carlo and Quasi-Monte Carlo Sampling, Springer.
Lemieux, C. and Ecuyer, P. L' (2001), ‘On selection criteria for lattice rules and other quasi-Monte Carlo point sets’, Math. Comput. Simulation 55, 139–148.
Li, D. and Hickernell, F. J. (2003), Trigonometric spectral collocation methods on lattices. In Recent Advances in Scientific Computing and Partial Differential Equations (Cheng, S. Y., Shu, C.-W. and Tang, T., eds), Vol. 330 of AMS Series in Contemporary Mathematics, AMS, pp. 121–132.
Li, G., Schoendorf, J., Ho, T.-S. and Rabitz, H. (2004), ‘Multicut-HDMR with an application to an ionospheric model’, J. Comput. Chem. 25, 1149–1156.
Loh, W. L. (2003), ‘On the asymptotic distribution of scrambled net quadrature’, Ann. Statist. 31, 1282–1324.
Lyness, J. and Sørevik, T. (2006), ‘Five-dimensional/k-optimal lattice rules’, Math. Comp. 75, 1467–1480.
Maize, E. (1980), Contributions to the theory of error reduction in quasi-Monte Carlo methods. PhD thesis, Claremont Graduate School.
Matousěk, J. (1998 a), ‘The exponent of discrepancy is at least 1.0669’, J. Complexity 14, 448–453.
Matousěk, J. (1998 b), ‘On the L_{2} discrepancy for anchored boxes’, J. Complexity 14, 527–556.
Matousěk, J. (1999), Geometric Discrepancy: An Illustrated Guide, Vol. 18 of Algorithms and Combinatorics, Springer.
Matsumoto, M. and Yoshiki, T. (2013), Existence of higher order convergent quasi-Monte Carlo rules via Walsh figure of merit. In Monte Carlo and Quasi-Monte Carlo Methods 2012 (Dick, J., Kuo, F. Y., Peters, G. W. and Sloan, I. H., eds), Springer, to appear.
Matsumoto, M., Saito, M., Matoba, K. (2013), ‘A computable figure of merit for quasi-Monte Carlo point sets’, Math. Comp., toappear.
Niederreiter, H. (1978), ‘Quasi-Monte Carlo methods and pseudo-random numbers’, Bull. Amer. Math. Soc. 84, 957–1041.
Niederreiter, H. (1987), ‘Point sets and sequences with small discrepancy’, Monatsh. Math. 104, 273–337.
Niederreiter, H. (1988), ‘Low-discrepancy and low-dispersion sequences’, J. Number Theory 30, 51–70.
Niederreiter, H. (1992 a), Random Number Generation and Quasi-Monte Carlo Methods, SIAM.
Niederreiter, H. (1992 b), ‘Low-discrepancy point sets obtained by digital constructions over finite fields’, Czechoslovak Math. J. 42, 143–166.
Niederreiter, H. (2003), ‘The existence of good extensible polynomial lattice rules’, Monatsh. Math. 139, 295–307.
Niederreiter, H. (2004), Digital nets and coding theory. In Coding, Cryptography and Combinatorics (Feng, K. Q., Niederreiter, H. and Xing, C. P., eds), Birkhauser, pp. 247–257.
Niederreiter, H. (2009), ‘On the discrepancy of some hybrid sequences’, Acta Arith. 138, 373–398.
Niederreiter, H. (2010 a), ‘A discrepancy bound for hybrid sequences involving digital explicit inversive pseudorandom numbers’, Unif. Distrib. Theory 5, 53–63.
Niederreiter, H. (2010 b), ‘Further discrepancy bounds and an Erdõs-Turán-Koksma inequality for hybrid sequences’, Monatsh. Math. 161, 193–222.
Niederreiter, H. (2012), ‘Improved discrepancy bounds for hybrid sequences involving Halton sequences’, Acta Arith. 155, 71–84.
Niederreiter, H. and Pillichshammer, F. (2009), ‘Construction algorithms for good extensible lattice rules’, Constr. Approx. 30, 361–393.
Niederreiter, H. and Winterhof, A. (2011), ‘Discrepancy bounds for hybrid sequences involving digital explicit inversive pseudorandom numbers’, Unif. Distrib. Theory 6, 33–56.
Niederreiter, H. and Xing, C. P. (1995), ‘Low-discrepancy sequences obtained from algebraic function fields over finite fields’, Acta Arith. 72, 281–298.
Niederreiter, H. and Xing, C. P. (1996 a), ‘Low-discrepancy sequences and global function fields with many rational places’, Finite Fields Appl. 2, 241–273.
Niederreiter, H. and Xing, C. P. (1996 b), Quasirandom points and global function fields. In Finite Fields and Applications Vol. 233 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 269–296.
Niu, B. and Hickernell, F. J. (2009), Monte Carlo simulation of stochastic integrals when the cost of function evaluation is dimension dependent. In Monte Carlo and Quasi-Monte Carlo Methods 2008 (L'Ecuyer, P. and Owen, A. B., eds), Springer, pp. 545–560.
Niu, B., Hickernell, F. J., Müller-Gronbach, T. and Ritter, K. (2011), ‘Deterministic multi-level algorithms for infinite-dimensional integration on ℝ^{ℕ}’, J. Complexity 27, 331–351.
Novak, E. and Woázniakowski, H. (2001), ‘Intractability results for integration and discrepancy’, J Complexity, 17, 388–441.
Novak, E. and Woázniakowski, H. (2008), Tractability of Multivariate Problems, Vol. I: Linear Information, EMS.
Novak, E. and Woźniakowski, H. (2009), L_{2} discrepancy and multivariate integration. In Analytic Number Theory: Essays in Honour of Klaus Roth (Chen, W.W.L., Gowers, W. T., Halberstam, H., Schmidt, W. M. and Vaughan, R. C., eds), Cambridge University Press, pp. 359–388.
Novak, E. and Woázniakowski, H. (2010), Tractability of Multivariate Problems, Vol. II: Standard Information for Functionals, EMS.
Novak, E. and Woźniakowski, H. (2012), Tractability of Multivariate Problems, Vol. III: Standard Information for Operators, EMS.
Nuyens, D. and Cools, R. (2006 a), ‘Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces’, Math. Comp. 75, 903–920.
Nuyens, D. and Cools, R. (2006 b), ‘Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points’, J. Complexity 22, 4–28.
Nuyens, D. and Cools, R. (2006 c), Fast component-by-component construction, a reprise for different kernels. In Monte Carlo and Quasi-Monte Carlo Methods 2004 (Niederreiter, H. and Talay, D., eds), Springer, pp. 373–387.
Okten, G. (1996), ‘A probabilistic result on the discrepancy of a hybrid Monte Carlo sequence and applications’, Monte Carlo Methods Appl. 2, 255–270.
Okten, G., Tuffin, B. and Burago, V. (2006), ‘A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance’, J. Complexity 22, 435–458.
Owen, A. B. (1995), Randomly permuted (t, m, s)-nets and (t, s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (Las Vegas, NV, 1994), Vol. 106 of Lecture Notes in Statistics, Springer, pp. 299–317.
Owen, A. B. (1997 a), ‘scrambled net variance for integrals of smooth functions’, Ann. Statist. 25, 1541–1562.
Owen, A. B. (1997 b), ‘Monte Carlo variance of scrambled net quadrature’, SIAM J. Numer. Anal. 34, 1884–1910.
Owen, A. B. (1998), ‘scrambling Sobol' and Niederreiter-Xing points’, J. Complexity 14, 466–489.
Owen, A. B. (2006), Quasi-Monte Carlo for integrands with point singularities at unknown locations. In Monte Carlo and Quasi-Monte Carlo Methods 2004 (Niederreiter, H. and Talay, D., eds), Springer, pp. 403–417.
Paskov, S. H. and Traub, J. (1995), ‘Faster evaluation of financial derivatives’, J. Portfolio Management 22, 113–120.
Pillichshammer, F. (2002), ‘Bounds for the quality parameter of digital shift nets over Z_{2}’, Finite Fields Appl. 8, 444–454.
Pillichshammer, F. and Pirsic, G. (2009), Discrepancy of hyperplane nets and cyclic nets. In Monte Carlo and Quasi-Monte Carlo Methods 2008 (Ecuyer, P. L' and Owen, A. B., eds), Springer, pp. 573–587.
Pirsic, G. (2002), A software implementation of Niederreiter-Xing sequences. In Monte Carlo and Quasi-Monte Carlo Methods 2000 (Fang, K. T., Hickernell, F. J. and Niederreiter, H., eds), Springer, pp. 434–445.
Pirsic, G. and Pillichshammer, F. (2011), ‘Extensible hyperplane nets’, Finite Fields Appl. 17, 407–423.
Pirsic, G. and Schmid, W. C. (2001), ‘Calculation of the quality parameter of digital nets and application to their construction’, J. Complexity 17, 827–839.
Pirsic, G., Dick, J. and Pillichshammer, F. (2006), ‘Cyclic digital nets, hyperplane nets, and multivariate integration in Sobolev spaces’, SIAM J. Numer. Anal. 44, 385–411.
Plaskota, L. and Wasilkowski, G. (2011), ‘Tractability of infinite-dimensional integration in the worst case and randomized setting’, J. Complexity 27, 505–518.
Plaskota, L., Wasilkowski, G. and Woázniakowski, H. (2000), ‘A new algorithm and worst case complexity for Feynman-Kac path integration’, J. Comput. Phys. 164, 335–353.
Rader, C. M. (1968), ‘Discrete Fourier transforms when the number of data samples is prime’, Proc. IEEE 5, 1107–1108.
Rhee, C.-H. and Glynn, P. W. (2012), A new approach to unbiased estimation for SDE's. In Proc. 2012 Winter Simulation Conference (Laroque, C., Him-melspach, J., Pasupathy, R., Rose, O. and Uhrmacher, A. M., eds).
Schmid, W. C. (1996), Shift-nets: A new class of binary digital (t, m, s)-nets. In Monte Carlo and Quasi-Monte Carlo Methods 1996 (Niederreiter, H., Hellekalek, P., Larcher, G. and Zinterhof, P., eds), Vol. 127 of Lecture Notes in Statistics, Springer, pp. 369–381.
Schmid, W. C. (2000), Improvements and extensions of the ‘salzburg Tables’ by using irreducible polynomials. In Monte Carlo and Quasi-Monte Carlo Methods 1998 (Niederreiter, H. and Spanier, J., eds), Springer, pp. 436–447.
Schwab, C. and Gittelson, C. J. (2011), Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. In Acta Numerica, Vol. 20, Cambridge University Press, pp. 291–467.
Sidi, A. (1993), A new variable transformation for numerical integration. In Numerical Integration IV: Oberwolfach, 1992 (Brass, H. and Hämmerlin, G., eds), Birkhäuser, pp. 359–373.
Sinescu, V. and Joe, S. (2007), ‘Good lattice rules based on the general weighted star discrepancy’, Math. Comp. 76, 989–1004.
Sinescu, V. and Joe, S. (2008), Good lattice rules with a composite number of points based on the product weighted star discrepancy. In Monte Carlo and Quasi-Monte Carlo Methods 2006 (Keller, A., Heinrich, S. and Niederreiter, H., eds), Springer, pp. 645–658.
Sinescu, V. and L.|Ecuyer, P. (2011), ‘Existence and construction of shifted lattice rules with an arbitrary number of points and bounded weighted star discrepancy for general decreasing weights’, J. Complexity 27, 449–465.
Sloan, I. H. (2007), ‘Finite order integration weights can be dangerous’, Comput. Meth. Appl. Math. 7, 239–254.
Sloan, I. H. and Joe, S. (1994), Lattice Methods for Multiple Integration, Oxford University Press.
Sloan, I. H. and ReztsovA, V. A, V. (2002), ‘Component-by-component construction of good lattice rules’, Math. Comp. 71, 263–273.
Sloan, I. H. and Woźniakowski, H. (1998), ‘When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals?’, J. Complexity 14, 1–33.
Sloan, I. H. and Woźniakowski, H. (2001), ‘Tractability of multivariate integration for weighted Korobov classes’, J. Complexity 17, 697–721.
Sloan, I. H. and Woźniakowski, H. (2002), ‘Tractability of integration in non-periodic and periodic weighted tensor product Hilbert spaces’, J. Complexity 18, 479–499.
Sloan, I. H., Kuo, F. Y. and Joe, S. (2002 a) ‘On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces’, Math. Comp. 71, 1609–1640.
Sloan, I. H., Kuo, F. Y. and Joe, S. (2002 b) ‘Constructing randomly shifted lattice rules in weighted Sobolev spaces’, SIAM J. Numer. Anal. 40, 1650–1665.
Sloan, I. H., Wang, X. and Woźniakowski, H. (2004), ‘Finite-order weights imply tractability of multivariate integration’, J. Complexity 20, 46–74.
Sobol', I. M. (1967), ‘Distribution of points in a cube and approximate evaluation of integrals’ (in Russian), Ž. Vyčisl. Mat. i Mat. Fiz. 7, 784–802.
Sobol', I. M. (1969), Multidimensional Quadrature Formulas and Haar Functions (in Russian), Nauka.
Smolyak, S. (1963), ‘Quadrature and interpolation formulas for tensor products of certain classes of functions’, Soviet Math. Dokl. 4, 240–243.
Russian original in Dokl. Akad. Nauk SSSR 148 (1963), 1042–1045.
Stroud, A. H. (1971), Approximate Calculation ofMultiple Integrals, Prentice-Hall.
Teckentrup, A. L., Scheichl, R., Giles, M. B. and Ullmann, E. (2012), Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficient. Technical Report, University of Bath.
Tezuka, S. (2013), ‘On the discrepancy of generalized Niederreiter sequences’, J. Complexity, toappear.
Tezuka, S. and Faure, H. (2003), ‘I-binomial scrambling of digital nets and sequences’, J. Complexity 19, 744–757.
Thomas-Agnan, C. (1996), ‘Computing a family of reproducing kernels for statistical applications’, Numer. Algorithms 13, 21–32.
Traub, J. F., Wasilkowski, G. W. and Woźniakowski, H. (2008), Information-Based Complexity, Academic Press.
van der Vart, A. W. and Wellner, J. A. (2009), Weak Convergence and Empirical Processes, Springer Series in Statistics, Springer.
Wahba, G. (1990), Spline Models for Observational Data, Vol.59 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.
Walsh, J. L. (1923), ‘A closed set of normal orthogonal functions’, Amer. J. Math. 45, 5–24.
Wang, X. (2002), ‘A constructive approach to strong tractability using quasi-Monte Carlo algorithms’, J. Complexity 18, 683–701.
Wang, X. (2003), ‘strong tractability of multivariate integration using quasi-Monte Carlo algorithms’, Math. Comp. 72, 823–838.
Wang, X. and Fang, K.-T. (2003), ‘Effective dimension and quasi-Monte Carlo integration’, J. Complexity 19, 101–124.
Wang, X. and Sloan, I. H. (2005), ‘Why are high-dimensional finance problems often of low effective dimension?’, SIAM J. Sci. Comput. 27, 159–183.
Wang, X. and Sloan, I. H. (2006), ‘Efficient weighted lattice rules with applications to finance’, SIAM J. Sci. Comput. 28, 728–750.
Wang, X. and Sloan, I. H. (2007), ‘Brownian bridge and principal component analysis: Towards removing the curse of dimensionality’, IMA J. Numer. Anal. 27, 631–654.
Wang, X. and Sloan, I. H. (2011), ‘Quasi-Monte Carlo methods in financial engineering: An equivalence principle and dimension reduction’, Oper. Res. 59, 80–95.
Wasilkowski, G. W. and Woźniakowski, H. (1995), ‘Explicit cost bounds of algorithms for multivariate tensor product problems’, J. Complexity 11, 1–56.
Wasilkowski, G. W. and Woźniakowski, H. (1996), ‘On tractability of path integration’, J. Math.Phys. 37, 2071–2088.
Wasilkowski, G. W. and Woźniakowski, H. (1999), ‘Weighted tensor product algorithms for linear multivariate problems’, J. Complexity 15, 402–447.
Wasilkowski, G. W. and Woźniakowski, H. (2004), ‘Finite-order weights imply tractability of linear multivariate problems’, J. Approx. Theory 130, 57–77.
Wasilkowski, G. W. and Woźniakowski, H. (2010), ‘On the exponent of discrepancy’, Math. Comp. 79, 983–992.
Werschulz, A. and Woźniakowski, H. (2009), ‘Tractability of multivariate approximation over a weighted unanchored Sobolev space’, Constr. Approx. 30, 395–421.
Weyl, H. (1916), ‘Über die Gleichverteilung von Zahlen mod. Eins’, Math. Ann. 77, 313–352.
Woźniakowski, H. (2013), Monte Carlo integration. In Encyclopedia of Numerical Analysis.
Xing, C. P. and Niederreiter, H. (1995), ‘A construction of low-discrepancy sequences using global function fields’, Acta Arith. 73, 87–102.
Yue, R. X. and Hickernell, F. J. (2001), ‘Integration and approximation based on scramble sampling in arbitrary dimensions’, J. Complexity 17, 881–897.
Yue, R. X. and Hickernell, F. J. (2002), ‘The discrepancy and gain coefficients of scrambled digital nets’, J. Complexity 18, 135–151.
Yue, R. X. and Hickernell, F. J. (2005), ‘strong tractability of integration using scrambled Niederreiter points‘, Math. Comp. 74, 1871–1893.
Yue, R. X. and Hickernell, F. J. (2006), ‘strong tractability of quasi-Monte Carlo quadrature using nets for certain Banach spaces’, SIAM J. Numer. Anal. 44, 2559–2583.
Zeng, X. Y., Leung, K. T., and Hickernell, F. J. (2006), Error analysis of splines for periodic problems using lattice designs. In Monte Carlo and Quasi-Monte Carlo Methods 2004 (Niederreiter, H. and Talay, D., eds), Springer, pp. 501–514.
Zenger, C. (1991), Sparse grids. In Parallel Algorithms for Partial Differential Equations (Hackbusch, W., ed.), Vol. 31 of Notes on Numerical Fluid Mechanics, Vieweg.