Skip to main content
×
Home

Inverse problems: A Bayesian perspective

  • A. M. Stuart (a1)
Abstract

The subject of inverse problems in differential equations is of enormous practical importance, and has also generated substantial mathematical and computational innovation. Typically some form of regularization is required to ameliorate ill-posed behaviour. In this article we review the Bayesian approach to regularization, developing a function space viewpoint on the subject. This approach allows for a full characterization of all possible solutions, and their relative probabilities, whilst simultaneously forcing significant modelling issues to be addressed in a clear and precise fashion. Although expensive to implement, this approach is starting to lie within the range of the available computational resources in many application areas. It also allows for the quantification of uncertainty and risk, something which is increasingly demanded by these applications. Furthermore, the approach is conceptually important for the understanding of simpler, computationally expedient approaches to inverse problems.

Copyright
References
Hide All
Adler R. J. (1990), An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes, Vol. 12 of Institute of Mathematical Statistics Lecture Notes: Monograph Series, Institute of Mathematical Statistics, Hayward, CA.
Akella S. and Navon I. (2009), ‘Different approaches to model error formulation in 4D-Var: A study with high resolution advection schemes’, Tellus 61A, 112128.
Alekseev A. and Navon I. (2001), ‘The analysis of an ill-posed problem using multiscale resolution and second order adjoint techniques’, Comput. Meth. Appl. Mech. Engrg 190, 19371953.
Antoulas A., Soresen D. and Gugerrin S. (2001), A Survey of Model Reduction Methods for Large Scale Dynamical Systems, AMS.
Apte A., Hairer M., Stuart A. and Voss J. (2007), ‘Sampling the posterior: An approach to non-Gaussian data assimilation’, Physica D 230, 5064.
Apte A., Jones C. and Stuart A. (2008 a), ‘A Bayesian approach to Lagrangian data assimilation’, Tellus 60, 336347.
Apte A., Jones C., Stuart A. and Voss J. (2008 b), ‘Data assimilation: Mathematical and statistical perspectives’, Internat. J. Numer. Methods Fluids 56, 10331046.
Archambeau C., Cornford D., Opper M. and Shawe J.-Taylor (2007), Gaussian process approximations of stochastic differential equations. In JMLR Workshop and Conference Proceedings 1: Gaussian Processes in Practice (Lawrence N., ed.), The MIT Press, pp. 116.
Archambeau C., Opper M., Shen Y., Cornford D. and Shawe-Taylor J. (2008), Variational inference for diffusion processes. In Advances in Neural Information Processing Systems 20 (Platt J., Koller D., Singer Y. and Roweis S., eds), The MIT Press, Cambridge, MA, pp. 1724.
Backus G. (1970 a), ‘Inference from inadequate and inaccurate data I’, Proc. Nat. Acad. Sci. 65, 17.
Backus G. (1970 b), ‘Inference from inadequate and inaccurate data II’, Proc. Nat. Acad. Sci. 65, 281287.
Backus G. (1970 c), ‘Inference from inadequate and inaccurate data III’, Proc. Nat. Acad. Sci. 67, 282289.
Bain A. and Crisan D. (2009), Fundamentals of Stochastic Filtering, Springer.
Bannister R., Katz D., Cullen M., Lawless A. and Nichols N. (2008), ‘Modelling of forecast errors in geophysical fluid flows’, Internat. J. Numer. Methods Fluids 56, 11471153.
Beck J., Blackwell B. and Clair C. (2005), Inverse Heat Conduction: Ill-Posed Problems, Wiley.
Bell M., Martin M. and Nichols N. (2004), ‘Assimilation of data into an ocean model with systematic errors near the equator’, Quart. J. Royal Met. Soc. 130, 873894.
Bengtsson T., Bickel P. and Li B. (2008), ‘Curse of dimensionality revisited: The collapse of importance sampling in very large scale systems’, IMS Collections: Probability and Statistics: Essays in Honor of David Freedman 2, 316334.
Bengtsson T., Snyder C. and Nychka D. (2003), ‘Toward a nonlinear ensemble filter for high-dimensional systems’, J. Geophys. Res. 108, 8775.
Bennett A. (2002), Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press.
Bennett A. and Budgell W. (1987), ‘Ocean data assimilation and the Kalman filter: Spatial regularity’, J. Phys. Oceanography 17, 15831601.
Bennett A. and Chua B. (1994), ‘Open ocean modelling as an inverse problem’, Monthly Weather Review 122, 13261336.
Bennett A. and Miller R. (1990), ‘Weighting initial conditions in variational assimilation schemes’, Monthly Weather Review 119, 10981102.
Bergemann K. and Reich S. (2010), ‘A localization technique for ensemble transform Kalman filters’, Quart. J. Royal Met. Soc. To appear.
Berliner L. (2001), ‘Monte Carlo based ensemble forecasting’, Statist. Comput. 11, 269275.
Bernardo J. and Smith A. (1994), Bayesian Theory, Wiley.
Beskos A. and Stuart A. (2009), MCMC methods for sampling function space. In Invited Lectures: Sixth International Congress on Industrial and Applied Mathematics, ICIAM07 (Jeltsch R. and Wanner G., eds), European Mathematical Society, pp. 337364.
Beskos A. and Stuart A. M. (2010), Computational complexity of Metropolis Hastings methods in high dimensions. In Monte Carlo and Quasi-Monte Carlo Methods 2008 (L'Ecuyer P. and Owen A. B., eds), Springer, pp. 6172.
Beskos A., Roberts G. O. and Stuart A. M. (2009), ‘Optimal scalings for local Metropolis-Hastings chains on non-product targets in high dimensions’, Ann. Appl. Probab. 19, 863898.
Beskos A., Roberts G. O., Stuart A. M. and Voss J. (2008), ‘MCMC methods for diffusion bridges’, Stochastic Dynamics 8, 319350.
Bickel P. and Doksum K. (2001), Mathematical Statistics, Prentice-Hall.
Bickel P., Li B. and Bengtsson T. (2008), ‘Sharp failure rates for the bootstrap particle filter in high dimensions’, IMS Collections: Pushing the Limits of Contemporary Statistics 3, 318329.
Bogachev V. (1998), Gaussian Measures, AMS.
Bolhuis P., Chandler D., Dellago D. and Geissler P. (2002), ‘Transition path sampling: Throwing ropes over rough mountain passes’, Ann. Rev. Phys. Chem. 53, 291318.
Borcea L. (2002), ‘Electrical impedence tomography’, Inverse Problems 18, R99–R136.
Brasseur P., Bahurel P., Bertino L., Birol F., Brankart J.-M., Ferry N., Losa S., Remy E., Schroeter J., Skachko S., Testut C.-E., Tranchat B., Van Leeuwen P. and Verron J. (2005), ‘Data assimilation for marine monitoring and prediction: The Mercator operational assimilation systems and the Mersea developments’, Quart. J. Royal Met. Soc. 131, 35613582.
Breiman L. (1992), Probability, Vol. 7 of Classics in Applied Mathematics, SIAM, Philadelphia, PA. Corrected reprint of the 1968 original.
Burgers G., Van Leeuwen P. and Evensen G. (1998), ‘On the analysis scheme in the ensemble Kalman filter’, Monthly Weather Review 126, 17191724.
Calvetti D. (2007), ‘Preconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective’, J. Comput. Appl. Math. 198, 378395.
Calvetti D. and Somersalo E. (2005 a), ‘Priorconditioners for linear systems’, Inverse Problems 21, 13971418.
Calvetti D. and Somersalo E. (2005 b), ‘Statistical elimination of boundary artefacts in image deblurring’, Inverse Problems 21, 16971714.
Calvetti D. and Somersalo E. (2006), ‘Large-scale statistical parameter estimation in complex systems with an application to metabolic models’, Multiscale Modeling and Simulation 5, 13331366.
Calvetti D. and Somersalo E. (2007 a), ‘Gaussian hypermodel to recover blocky objects’, Inverse Problems 23, 733754.
Calvetti D. and Somersalo E. (2007 b), Introduction to Bayesian Scientific Computing, Vol. 2 of Surveys and Tutorials in the Applied Mathematical Sciences, Springer.
Calvetti D. and Somersalo E. (2008), ‘Hypermodels in the Bayesian imaging framework’, Inverse Problems 24, #034013.
Calvetti D., Hakula H., Pursiainen S. and Somersalo E. (2009), ‘Conditionally Gaussian hypermodels for cerebral source location’, SIAM J. Imag. Sci. 2, 879909.
Calvetti D., Kuceyeski A. and Somersalo E. (2008), ‘Sampling based analysis of a spatially distributed model for liver metabolism at steady state’, Multiscale Modeling and Simulation 7, 407431.
Candès E. and Wakin M. (2008), ‘An introduction to compressive sampling’, IEEE Signal Processing Magazine, March 2008, 2130.
Chemin J.-Y. and Lerner N. (1995), ‘Flot de champs de veceurs non lipschitziens et équations de Navier-Stokes’, J. Diff. Equations 121, 314328.
Chorin A. and Hald O. (2006), Stochastic Tools in Mathematics and Science, Vol. 1 of Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York.
Chorin A. and Krause P. (2004), ‘Dimensional reduction for a Bayesian filter’, Proc. Nat. Acad. Sci. 101, 1501315017.
Chorin A. and Tu X. (2009), ‘Implicit sampling for particle filters’, Proc. Nat. Acad. Sci. 106, 1724917254.
Chorin A. and Tu X. (2010), ‘Interpolation and iteration for nonlinear filters’, Math. Model. Numer. Anal. To appear.
Christie M. (2010), Solution error modelling and inverse problems. In Simplicity, Complexity and Modelling, Wiley, New York, to appear.
Christie M., Pickup G., O'Sullivan A. and Demyanov V. (2008), Use of solution error models in history matching. In Proc. European Conference on the Mathematics of Oil Recovery XI, European Association of Geoscientists and Engineers.
Chua B. and Bennett A. (2001), ‘An inverse ocean modelling system’, Ocean. Meteor. 3, 137165.
Cohn S. (1997), ‘An introduction to estimation theory’, J. Met. Soc. Japan 75, 257288.
Cotter S., Dashti M., Robinson J. and Stuart A. (2009), ‘Bayesian inverse problems for functions and applications to fluid mechanics’, Inverse Problems 25, #115008.
Cotter S., Dashti M. and Stuart A. (2010 a), ‘Approximation of Bayesian inverse problems’, SIAM J. Numer. Anal. To appear.
Cotter S., Dashti M., Robinson J. and Stuart A. (2010 b). In preparation.
Courtier P. (1997), ‘Dual formulation of variational assimilation’, Quart. J. Royal Met. Soc. 123, 24492461.
Courtier P. and Talagrand O. (1987), ‘Variational assimilation of meteorological observations with the adjoint vorticity equation II: Numerical results’, Quart. J. Royal Met. Soc. 113, 13291347.
Courtier P., Anderson E., Heckley W., Pailleux J., Vasiljevic D., Hamrud M., Hollingworth A., Rabier F. and Fisher M. (1998), ‘The ECMWF implementation of three-dimensional variational assimilation (3D-Var)’, Quart. J. Royal Met. Soc. 124, 17831808.
Cressie N. (1993), Statistics for Spatial Data, Wiley.
Cui T., Fox C., Nicholls G. and O'Sullivan M. (2010), ‘Using MCMC sampling to calibrate a computer model of a geothermal field’. Submitted.
Da G. Prato and Zabczyk J. (1992), Stochastic Equations in Infinite Dimensions, Vol. 44 of Encyclopedia of Mathematics and its Applications, Cambridge University Press.
Dacarogna B. (1989), Direct Methods in the Calculus of Variations, Springer, New York.
Dashti M. and Robinson J. (2009), ‘Uniqueness of the particle trajectories of the weak solutions of the two-dimensional Navier-Stokes equations’, Nonlinearity 22, 735746.
Dashti M., Harris S. and Stuart A. M. (2010 a), Bayesian approach to an elliptic inverse problem. In preparation.
Dashti M., Pillai N. and Stuart A. (2010 b), Bayesian Inverse Problems in Differential Equations. Lecture notes, available from: http://www.warwick.ac.uk/~masdr/inverse.html.
Derber J. (1989), ‘A variational continuous assimilation technique’, Monthly Weather Review 117, 24372446.
Deuflhard P. (2004), Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer.
DeVolder B., Glimm J., Grove J., Kang Y., Lee Y., Pao K., Sharp D. and Ye K. (2002), ‘Uncertainty quantification for multiscale simulations’, J. Fluids Engrg 124, 2942.
Donoho D. (2006), ‘Compressed sensing’, IEEE Trans. Inform. Theory 52, 1289– 1306.
Dostert P., Efendiev Y., Hou T. and Luo W. (2006), ‘Coarse-grain Langevin algorithms for dynamic data integration’, J. Comput. Phys. 217, 123142.
Doucet N., de Frietas A. and Gordon N. (2001), Sequential Monte Carlo in Practice, Springer.
Dudley R. (2002), Real Analysis and Probability, Cambridge University Press, Cambridge.
Dürr D. and Bach A. (1978), ‘The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process’, Comm. Math. Phys. 160, 153170.
Efendiev Y., Datta-Gupta A., Ma X. and Mallick B. (2009), ‘Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques’, Water Resources Res. 45, #W11414.
Eknes M. and Evensen G. (1997), ‘Parameter estimation solving a weak constraint variational formulation for an Ekman model’, J. Geophys. Res. 12, 479491.
Ellerbroek B. and Vogel C. (2009), ‘Inverse problems in astronomical adaptive optics’, Inverse Problems 25, #063001.
Engl H., Hanke M. and Neubauer A. (1996), Regularization of Inverse Problems, Kluwer.
Engl H., Hofinger A. and Kindermann S. (2005), ‘Convergence rates in the Prokhorov metric for assessing uncertainty in ill-posed problems’, Inverse Problems 21, 399412.
Evensen G. (2006), Data Assimilation: The Ensemble Kalman Filter, Springer.
Evensen G. and Van Leeuwen P. (2000), ‘An ensemble Kalman smoother for nonlinear dynamics’, Monthly Weather Review 128, 18521867.
Fang F., Pain C., Navon I., Piggott M., Gorman G., Allison P. and Goddard A. (2009 a), ‘Reduced order modelling of an adaptive mesh ocean model’, Internat. J. Numer. Methods Fluids 59, 827851.
Fang F., Pain C., Navon I., Piggott M., Gorman G., Farrell P., Allison P. and Goddard A. (2009 b), ‘A POD reduced-order 4D-Var adaptive mesh ocean modelling approach’, Internat. J. Numer. Methods Fluids 60, 709732.
Farmer C. (2005), Geological modelling and reservoir simulation. In Mathematical Methods and Modeling in Hydrocarbon Exploration and Production (Iske A. and Randen T., eds), Springer, Heidelberg, pp. 119212.
Farmer C. (2007), Bayesian field theory applied to scattered data interpolation and inverse problems. In Algorithms for Approximation (Iske A. and Levesley J., eds), Springer, pp. 147166.
Fitzpatrick B. (1991), ‘Bayesian analysis in inverse problems’, Inverse Problems 7, 675702.
Franklin J. (1970), ‘Well-posed stochastic extensions of ill-posed linear problems’, J. Math. Anal. Appl. 31, 682716.
Freidlin M. and Wentzell A. (1984), Random Perturbations of Dynamical Systems, Springer, New York.
Gelfand A. and Smith A. (1990), ‘Sampling-based approaches to calculating marginal densities’, J. Amer. Statist. Soc. 85, 398409.
Gibbs A. and Su F. (2002), ‘On choosing and bounding probability metrics’, Internat. Statist. Review 70, 419435.
Gittelson C. and Schwab C. (2011), Sparse tensor discretizations of high-dimen-sional PDEs. To appear in Acta Numerica, Vol. 20.
Glimm J., Hou S., Lee Y., Sharp D. and Ye K. (2003), ‘Solution error models for uncertainty quantification’, Contemporary Mathematics 327, 115140.
Gratton S., Lawless A. and Nichols N. (2007), ‘Approximate Gauss—Newton methods for nonlinear least squares problems’, SIAM J. Optimization 18, 106132.
Griffith A. and Nichols N. (1998), Adjoint methods for treating model error in data assimilation. In Numerical Methods for Fluid Dynamics VI, ICFD, Oxford, pp. 335344.
Griffith A. and Nichols N. (2000), ‘Adjoint techniques in data assimilation for treating systematic model error’, J. Flow, Turbulence and Combustion 65, 469488.
Grimmett G. and Stirzaker D. (2001), Probability and Random Processes, Oxford University Press, New York.
Gu C. (2002), Smoothing Spline ANOVA Models, Springer.
Gu C. (2008), ‘Smoothing noisy data via regularization’, Inverse Problems 24, #034002.
Hagelberg C., Bennett A. and Jones D. (1996), ‘Local existence results for the generalized inverse of the vorticity equation in the plane’, Inverse Problems 12, 437454.
Hairer E. and Wanner G. (1996), Solving Ordinary Differential Equations II, Vol. 14 of Springer Series in Computational Mathematics, Springer, Berlin.
Hairer E., Nørsett S. P. and Wanner G. (1993), Solving Ordinary Differential Equations I, Vol. 8 of Springer Series in Computational Mathematics, Springer, Berlin.
Hairer M. (2009), Introduction to Stochastic PDEs. Lecture notes.
Hairer M., Stuart A. M. and Voss J. (2007), ‘Analysis of SPDEs arising in path sampling II: The nonlinear case’, Ann. Appl. Probab. 17, 16571706.
Hairer M., Stuart A. M. and Voss J. (2009), Sampling conditioned diffusions. In Trends in Stochastic Analysis, Vol. 353 of London Mathematical Society Lecture Notes, Cambridge University Press, pp. 159186.
Hairer M., Stuart A. and Voss J. (2010 a), ‘Sampling conditioned hypoelliptic diffusions’. Submitted.
Hairer M., Stuart A. and Voss J. (2010 b), Signal processing problems on function space: Bayesian formulation, stochastic PDEs and effective MCMC methods. In Oxford Handbook of Nonlinear Filtering (Crisan D. and Rozovsky B., eds), Oxford University Press, to appear.
Hairer M., Stuart A., Voss J. and Wiberg P. (2005), ‘Analysis of SPDEs arising in path sampling I: The Gaussian case’, Comm. Math. Sci. 3, 587603.
Hastings W. K. (1970), ‘Monte Carlo sampling methods using Markov chains and their applications’, Biometrika 57, 97109.
Hein T. (2009), ‘On Tikhonov regularization in Banach spaces: Optimal convergence rate results’, Applicable Analysis 88, 653667.
Heino J., Tunyan K., Calvetti D. and Somersalo E. (2007), ‘Bayesian flux balance analysis applied to a skeletal muscle metabolic model’, J. Theor. Biol. 248, 91110.
Herbei R. and McKeague I. (2009), ‘Geometric ergodicity of hybrid samplers for ill-posed inverse problems’, Scand. J. Statist. 36, 839853.
Herbei R., McKeague I. and Speer K. (2008), ‘Gyres and jets: Inversion of tracer data for ocean circulation structure’, J. Phys. Oceanography 38, 11801202.
Hofinger A. and Pikkarainen H. (2007), ‘Convergence rates for the Bayesian approach to linear inverse problems’, Inverse Problems 23, 24692484.
Hofinger A. and Pikkarainen H. (2009), ‘Convergence rates for linear inverse problems in the presence of an additive normal noise’, Stoch. Anal. Appl. 27, 240257.
Huddleston M., Bell M., Martin M. and Nichols N. (2004), ‘Assessment of wind stress errors using bias corrected ocean data assimilation’, Quart. J. Royal Met. Soc. 130, 853872.
Hurzeler M. and Kunsch H. (2001), Approximating and maximizing the likelihood for a general state space model. In Sequential Monte Carlo Methods in Practice (Doucet A., de Freitas N. and Gordon N., eds), Springer, pp. 159175.
Huttunen J. and Pikkarainen H. (2007), ‘Discretization error in dynamical inverse problems: One-dimensional model case’, J. Inverse and Ill-posed Problems 15, 365386.
Ide K. and Jones C. (2007), ‘Data assimilation’, Physica D 230, vii–viii.
Ide K., Kuznetsov L. and Jones C. (2002), ‘Lagrangian data assimilation for pointvortex system’, J. Turbulence 3, 53.
Ikeda N. and Watanabe S. (1989), Stochastic Differential Equations and Diffusion Processes, second edn, North-Holland, Amsterdam.
Jardak M., Navon I. and Zupanski M. (2010), ‘Comparison of sequential data assimilation methods for the Kuramoto—Sivashinsky equation’, Internat. J. Numer. Methods Fluids 62, 374402.
Johnson C., Hoskins B. and Nichols N. (2005), ‘A singular vector perspective of 4DVAR: Filtering and interpolation’, Quart. J. Royal Met. Soc. 131, 120.
Johnson C., Hoskins B., Nichols N. and Ballard S. (2006), ‘A singular vector perspective of 4DVAR: The spatial structure and evolution of baroclinic weather systems’, Monthly Weather Review 134, 34363455.
Kaipio J. and Somersalo E. (2000), ‘Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography’, Inverse Problems 16, 14871522.
Kaipio J. and Somersalo E. (2005), Statistical and Computational Inverse problems, Vol. 160 of Applied Mathematical Sciences, Springer.
Kaipio J. and Somersalo E. (2007 a), ‘Approximation errors in nonstationary inverse problems’, Inverse Problems and Imaging 1, 7793.
Kaipio J. and Somersalo E. (2007 b), ‘Statistical inverse problems: Discretization, model reduction and inverse crimes’, J. Comput. Appl. Math. 198, 493504.
Kalnay E. (2003), Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press.
Kalnay E., Li H., Miyoshi S., Yang S. and Ballabrera-Poy J. (2007), ‘4D-Var or ensemble Kalman filter?’, Tellus 59, 758773.
Kaltenbacher B., Schöpfer F. and Schuster T. (2009), ‘Iterative methods for non-linear ill-posed problems in Banach spaces: Convergence and applications to parameter identification problems’, Inverse Problems 25, #065003.
Kennedy M. and O'Hagan A. (2001), ‘Bayesian calibration of computer models’, J. Royal Statist. Soc. 63B, 425464.
Kinderlehrer D. and Stampacchia G. (1980), An Introduction to Variational In-equalities and their Applications, SIAM.
Kolda T. and Bader B. (2009), ‘Tensor decompositions and applications’, SIAM Review 51, 455500.
Kuznetsov L., Ide K. and Jones C. (2003), ‘A method for assimilation of Lagrangian data’, Monthly Weather Review 131, 22472260.
Lassas M. and Siltanen S. (2004), ‘Can one use total variation prior for edge-preserving Bayesian inversion?’, Inverse Problems 20, 15371563.
Lassas M., Saksman E. and Siltanen S. (2009), ‘Discretization-invariant Bayesian inversion and Besov space priors’, Inverse Problems and Imaging 3, 87122.
Lawless A. and Nichols N. (2006), ‘Inner loop stopping criteria for incremental four-dimensional variational data assimilation’, Monthly Weather Review 134, 34253435.
Lawless A., Gratton S. and Nichols N. (2005 a), ‘Approximate iterative methods for variational data assimilation’, Internat. J. Numer. Methods Fluids 47, 11291135.
Lawless A., Gratton S. and Nichols N. (2005 b), ‘An investigation of incremental 4D-Var using non-tangent linear models’, Quart. J. Royal Met. Soc. 131, 459476.
Lawless A., Nichols N., Boess C. and Bunse-Gerstner A. (2008 a), ‘Approximate Gauss—Newton methods for optimal state estimation using reduced order models’, Internat. J. Numer. Methods Fluids 56, 13671373.
Lawless A., Nichols N., Boess C. and Bunse-Gerstner A. (2008 b), ‘Using model reduction methods within incremental four-dimensional variational data assimilation’, Monthly Weather Review 136, 15111522.
Lehtinen M., Paivarinta L. and Somersalo E. (1989), ‘Linear inverse problems for generalized random variables’, Inverse Problems 5, 599612.
Lifshits M. (1995), Gaussian Random Functions, Vol. 322 of Mathematics and its Applications, Kluwer, Dordrecht.
Livings D., Dance S. and Nichols N. (2008), ‘Unbiased ensemble square root filters’, Physica D: Nonlinear Phenomena 237, 10211028.
Lo M.éve (1977), Probability Theory I, fourth edn, Vol. 45 of Graduate Texts in Mathematics, Springer, New York.
Loéve M. (1978), Probability Theory II, fourth edn, Vol. 46 of Graduate Texts in Mathematics, Springer, New York.
Lorenc A. (1986), ‘Analysis methods for numerical weather prediction’, Quart. J. Royal Met. Soc. 112, 11771194.
Lubich C. (2008), From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, European Mathematical Society.
Ma X., Al-Harbi M., Datta-Gupta A. and Efendiev Y. (2008), ‘Multistage sampling approach to quantifying uncertainty during history matching geological models’, Soc. Petr. Engrg J. 13, 7787.
Majda A. and Gershgorin B. (2008), ‘A nonlinear test model for filtering slow-fast systems’, Comm. Math. Sci. 6, 611649.
Majda A. and Grote M. (2007), ‘Explicit off-line criteria for stable accurate filtering of strongly unstable spatially extended systems’, Proc. Nat. Acad. Sci. 104, 11241129.
Majda A. and Harlim J. (2010), ‘Catastrophic filter divergence in filtering nonlinear dissipative systems’, Comm. Math. Sci. 8, 2743.
Majda A., Harlim J. and Gershgorin B. (2010), ‘Mathematical strategies for filtering turbulent dynamical systems’, Disc. Cont. Dyn. Sys. To appear.
Mandelbaum A. (1984), ‘Linear estimators and measurable linear transformations on a Hilbert space’, Probab. Theory Rel. Fields 65, 385397.
Martin M., Bell M. and Nichols N. (2002), ‘Estimation of systematic error in an equatorial ocean model using data assimilation’, Internat. J. Numer. Methods Fluids 40, 435444.
McKeague I., Nicholls G., Speer K. and Herbei R. (2005), ‘Statistical inversion of south Atlantic circulation in an abyssal neutral density layer’, J. Marine Res. 63, 683704.
McLaughlin D. and Townley L. (1996), ‘A reassessment of the groundwater inverse problem’, Water Resources Res. 32, 11311161.
Metropolis N., Rosenbluth R., Teller M. and Teller E. (1953), ‘Equations of state calculations by fast computing machines’, J. Chem. Phys. 21, 10871092.
Meyn S. P. and Tweedie R. L. (1993), Markov Chains and Stochastic Stability, Communications and Control Engineering Series, Springer, London.
Michalak A. and Kitanidis P. (2003), ‘A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification’, Water Resources Res. 39, 1033.
Mitchell T., Buchanan B., DeJong G., Dietterich T., Rosenbloom P. and Waibel A. (1990), ‘Machine learning’, Annual Review of Computer Science 4, 417433.
Mohamed L., Christie M. and Demyanov V. (2010), ‘Comparison of stochastic sampling algorithms for uncertainty quantification’, Soc. Petr. Engrg J. To appear. http://dx.doi.org/10.2118/119139-PA
Mosegaard K. and Tarantola A. (1995), ‘Monte Carlo sampling of solutions to inverse problems’, J. Geophys. Research 100, 431447.
Neubauer A. (2009), ‘On enhanced convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces’, Inverse Problems 25, #065009.
Neubauer A. and Pikkarainen H. (2008), ‘Convergence results for the Bayesian inversion theory’, J. Inverse and Ill-Posed Problems 16, 601613.
Nichols N. (2003 a), Data assimilation: Aims and basic concepts. In Data Assimilation for the Earth System (Swinbank R., Shutyaev V. and Lahoz W. A., eds), Kluwer Academic, pp. 920.
Nichols N. (2003 b), Treating model error in 3-D and 4-D data assimilation. In Data Assimilation for the Earth System (Swinbank R., Shutyaev V. and Lahoz W. A., eds), Kluwer Academic, pp. 127135.
Nodet M. (2005), Mathematical modeling and assimilation of Lagrangian data in oceanography. PhD thesis, University of Nice.
Nodet M. (2006), ‘Variational assimilation of Lagrangian data in oceanography’, Inverse Problems 22, 245263.
Oksendal B. (2003), Stochastic Differential Equations: An Introduction with Applications, sixth edn, Universitext, Springer.
Orrell D., Smith L., Barkmeijer J. and Palmer T. (2001), ‘Model error in weather forecasting’, Non. Proc. in Geo. 8, 357371.
O'Sullivan A. and Christie M. (2006 a), ‘Error models for reducing history match bias’, Comput. Geosci. 10, 405–405.
O'Sullivan A. and Christie M. (2006 b), ‘Simulation error models for improved reservoir prediction’, Reliability Engineering and System Safety 91, 13821389.
Ott E., Hunt B., Szunyogh I., Zimin A., Kostelich E., Corazza M., Kalnay E., Patil D. and Yorke J. (2004), ‘A local ensemble Kalman filter for atmospheric data assimilation’, Tellus A 56, 273277.
Palmer T., Doblas-Reyes F., Weisheimer A., Shutts G., Berner J. and Murphy J. (2009), ‘Towards the probabilistic earth-system model’, J. Climate 70, 419435.
Pikkarainen H. (2006), ‘State estimation approach to nonstationary inverse problems: Discretization error and filtering problem’, Inverse Problems 22, 365379.
Pimentel S., Haines K. and Nichols N. (2008 a), ‘The assimilation of satellite derived sea surface temperatures into a diurnal cycle model’, J. Geophys. Research: Oceans 113, #C09013.
Pimentel S., Haines K. and Nichols N. (2008 b), ‘Modelling the diurnal variability of sea surface temperatures’, J. Geophys. Research: Oceans 113, #C11004.
Ramsay J. and Silverman B. (2005), Functional Data Analysis, Springer.
Reznikoff M. and Vanden Eijnden E. (2005), ‘Invariant measures of SPDEs and conditioned diffusions’, CR Acad. Sci. Paris 340, 305308.
Richtmyer D. and Morton K. (1967), Difference Methods for Initial Value Problems, Wiley.
Roberts G. and Rosenthal J. (1998), ‘Optimal scaling of discrete approximations to Langevin diffusions’, J. Royal Statist. Soc. B 60, 255268.
Roberts G. and Rosenthal J. (2001), ‘Optimal scaling for various Metropolis—Hastings algorithms’, Statistical Science 16, 351367.
Roberts G. and Tweedie R. (1996), ‘Exponential convergence of Langevin distributions and their discrete approximations’, Bernoulli 2, 341363.
Roberts G., Gelman A. and Gilks W. (1997), ‘Weak convergence and optimal scaling of random walk Metropolis algorithms’, Ann. Appl. Probab. 7, 110120.
Rudin L., Osher S. and Fatemi E. (1992), ‘Nonlinear total variation based noise removal algorithms’, Physica D 60, 259268.
Rue H. and Held L. (2005), Gaussian Markov Random Fields: Theory and Applications, Chapman & Hall.
Salman H., Ide K. and Jones C. (2008), ‘Using flow geometry for drifter deployment in Lagrangian data assimilation’, Tellus 60, 321335.
Salman H., Kuznetsov L., Jones C. and Ide K. (2006), ‘A method for assimilating Lagrangian data into a shallow-water equation ocean model’, Monthly Weather Review 134, 10811101.
Sanz-Serna J. M. and Palencia C. (1985), ‘A general equivalence theorem in the theory of discretization methods’, Math. Comp. 45, 143152.
Scherzer O., Grasmair M., Grossauer H., Haltmeier M. and Lenzen F. (2009), Variational Methods in Imaging, Springer.
Schwab C. and Todor R. (2006), ‘Karhunen-Loeve approximation of random fields in domains by generalized fast multipole methods’, J. Comput. Phys. 217, 100122.
Shen Y., Archambeau C., Cornford D. and Opper M. (2008 a), Variational Markov chain Monte Carlo for inference in partially observed nonlinear diffusions. In Proceedings of the Workshop on Inference and Estimation in Probabilistic Time-Series Models (Barber D., Cemgil A. T. and Chiappa S., eds), Isaac Newton Institute for Mathematical Sciences, Cambridge, pp. 6778.
Shen Y., Archambeau C., Cornford D., Opper M., Shawe-Taylor J. and Barillec R. (2008 b), ‘A comparison of variational and Markov chain Monte Carlo methods for inference in partially observed stochastic dynamic systems’, J. Signal Processing Systems. In press (published online).
Shen Y., Cornford D., Archambeau C. and Opper M. (2010), ‘Variational Markov chain Monte Carlo for Bayesian inference in partially observed non-linear diffusions’, Comput. Statist. Submitted.
Smith A. and Roberts G. (1993), ‘Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods’, J. Royal Statist. Soc. B 55, 323.
Snyder T., Bengtsson T., Bickel P. and Anderson J. (2008), ‘Obstacles to high-dimensional particle filtering’, Monthly Weather Review 136, 46294640.
Spanos P. and Ghanem R. (1989), ‘Stochastic finite element expansion for random media’, J. Engrg Mech. 115, 10351053.
Spanos P. and Ghanem R. (2003), Stochastic Finite Elements: A Spectral Approach, Dover.
Spiller E., Budhiraja A., Ide K. and Jones C. (2008), ‘Modified particle filter methods for assimilating Lagrangian data into a point-vortex model’, Physica D 237, 14981506.
Stanton L., Lawless A., Nichols N. and Roulstone I. (2005), ‘Variational data assimilation for Hamiltonian problems’, Internat. J. Numer. Methods Fluids 47, 13611367.
Stuart A., Voss J. and Wiberg P. (2004), ‘Conditional path sampling of SDEs and the Langevin MCMC method’, Comm. Math. Sci 2, 685697.
Talagrand P. and Courtier O. (1987), ‘Variational assimilation of meteorological observations with the adjoint vorticity equation I: Theory’, Quart. J. Royal Met. Soc. 113, 13111328.
Tarantola A. (2005), Inverse Problem Theory, SIAM.
Tierney L. (1998), ‘A note on Metropolis—Hastings kernels for general state spaces’, Ann. Appl. Probab. 8, 19.
Todor R. and Schwab C. (2007), ‘Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients’, IMA J. Numer. Anal. 27, 232261.
Uhlmann G. (2009), Visibility and invisibility. In Invited Lectures, Sixth International Congress on Industrial and Applied Mathematics, ICIAM07 (Jeltsch R. and Wanner G., eds), European Mathematical Society, pp. 381408.
Van Leeuwen P. (2001), ‘An ensemble smoother with error estimates’, Monthly Weather Review 129, 709728.
Van Leeuwen P. (2003), ‘A variance minimizing filter for large-scale applications’, Monthly Weather Review 131, 20712084.
Van Leeuwen P. (2009), ‘Particle filtering in geophysical systems’, Monthly Weather Review 137, 40894114.
Vernieres G., Ide K. and Jones C. (2010), ‘Lagrangian data assimilation, an application to the Gulf of Mexico’, Physica D. Submitted.
Vogel C. (2002), Computational Methods for Inverse Problems, SIAM.
Vossepoel F. and Van Leeuwen P. (2007), ‘Parameter estimation using a particle method: Inferring mixing coefficients from sea-level observations’, Monthly Weather Review 135, 10061020.
Vrettas M., Cornford D. and Shen Y. (2009), A variational basis function approximation for diffusion processes. In Proceedings of the 17th European Symposium on Artificial Neural Networks, D-side publications, Evere, Belgium, pp. 497502.
Wahba G. (1990), Spline Models for Observational Data, SIAM.
Watkinson L., Lawless A., Nichols N. and Roulstone I. (2007), ‘Weak constraints in four dimensional variational data assimilation’, Meteorologische Zeitschrift 16, 767776.
White L. (1993), ‘A study of uniqueness for the initialization problem for Burgers' equation’, J. Math. Anal. Appl. 172, 412431.
Williams D. (1991), Probability with Martingales, Cambridge University Press, Cambridge.
Wlasak M. and Nichols N. (1998), Application of variational data assimilation to the Lorenz equations using the adjoint method. In Numerical Methods for Fluid Dynamics VI, ICFD, Oxford, pp. 555562.
Wlasak M., Nichols N. and Roulstone I. (2006), ‘Use of potential vorticity for incremental data assimilation’, Quart. J. Royal Met. Soc. 132, 28672886.
Yu L. and O'Brien J. (1991), ‘Variational estimation of the wind stress drag coefficient and the oceanic eddy viscosity profile’, J. Phys. Ocean. 21, 13611364.
Zeitouni O. and Dembo A. (1987), ‘A maximum a posteriori estimator for trajectories of diffusion processes’, Stochastics 20, 221246.
Zimmerman D., de Marsily G., Gotway C., Marietta M., Axness C., Beauheim R., Bras R., Carrera J., Dagan G., Davies P., Gallegos D., Galli A., Gomez-Hernandez J., Grindrod P., Gutjahr A., Kitanidis P., Lavenue A., McLaughlin D., Neuman S., RamaRao B., Ravenne C. and Rubin Y. (1998), ‘A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow’, Water Resources Res. 6, 13731413.
Zuazua E. (2005), ‘Propagation, observation, control and numerical approximation of waves approximated by finite difference method’, SIAM Review 47, 197243.
Zupanski D. (1997), ‘A general weak constraint applicable to operational 4DVAR data assimilation systems’, Monthly Weather Review 125, 22742292.
Zupanski M., Navon I. and Zupanski D. (2008), ‘The maximum likelihood ensemble filter as a non-differentiable minimization algorithm’, Quart. J. Royal Met. Soc. 134, 10391050.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 436 *
Loading metrics...

Abstract views

Total abstract views: 1236 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.