Skip to main content Accessibility help
×
×
Home

Mathematical and computational methods for semiclassical Schrödinger equations*

  • Shi Jin (a1), Peter Markowich (a2) and Christof Sparber (a3)
Extract

We consider time-dependent (linear and nonlinear) Schrödinger equations in a semiclassical scaling. These equations form a canonical class of (nonlinear) dispersive models whose solutions exhibit high-frequency oscillations. The design of efficient numerical methods which produce an accurate approximation of the solutions, or at least of the associated physical observables, is a formidable mathematical challenge. In this article we shall review the basic analytical methods for dealing with such equations, including WKB asymptotics, Wigner measure techniques and Gaussian beams. Moreover, we shall give an overview of the current state of the art of numerical methods (most of which are based on the described analytical techniques) for the Schrödinger equation in the semiclassical regime.

Copyright
References
Hide All
Adalsteinsson, D. and Sethian, J. A. (1995), ‘A fast level set method for propagating interfaces’, J. Comput. Phys. 118, 269277.
Alazard, T. and Carles, R. (2007), ‘Semi-classical limit of Schrödinger–Poisson equations in space dimension n ≥ 3’, J. Diff. Equations 233, 241275.
Ambrosio, L. (2004), ‘Transport equation and Cauchy problem for BV vector fields’, Invent. Math. 158, 227260.
Ariel, G., Engquist, B., Tanushev, N. and Tsai, R. (2011), Gaussian beam decomposition of high frequency wave fields using expectation-maximization. Submitted.
Armbruster, D., Marthaler, D. and Ringhofer, C. (2003), ‘Kinetic and fluid model hierarchies for supply chains’, Multiscale Model. Simul. 2, 4361.
Ashcroft, N. W. and Mermin, N. D. (1976), Solid State Physics, Rinehart and Winston, New York.
Bal, G. and Pinaud, O. (2006), ‘Accuracy of transport models for waves in random media’, Wave Motion 43, 561578.
Bal, G. and Ryzhik, L. (2004), ‘Time splitting for the Liouville equation in a random medium’, Comm. Math. Sci. 2, 515534.
Bal, G., Fannjiang, A., Papanicolaou, G. and Ryzhik, L. (1999 a), ‘Radiative transport in a periodic structure’, J. Statist. Phys. 95, 479494.
Bal, G., Keller, J. B., Papanicolaou, G. and Ryzhik, L. (1999 b), ‘Transport theory for acoustic waves with reflection and transmission at interfaces’, Wave Motion 30, 303327.
Bal, G., Komorowski, T. and Ryzhik, L. (2010), ‘Kinetic limits for waves in a random medium’, Kinetic and Related Models 3, 529644.
Bao, W. and Shen, J. (2005), ‘A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–Einstein condensates’, SIAM J. Sci. Comput. 26, 20102028.
Bao, W., Jaksch, D. and Markowich, P. A. (2003 a), ‘Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation’, J. Comput. Phys. 187, 318342.
Bao, W., Jaksch, D. and Markowich, P. A. (2004), ‘Three dimensional simulation of jet formation in collapsing condensates’, J. Phys. B: At. Mol. Opt. Phys. 37, 329343.
Bao, W., Jin, S. and Markowich, P. A. (2002), ‘On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime’, J. Comput. Phys. 175, 487524.
Bao, W., Jin, S. and Markowich, P. A. (2003 b), ‘Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes’, SIAM J. Sci. Comput. 25, 2764.
Bao, W., Wang, H. and Markowich, P. A. (2005), ‘Ground, symmetric and central vortex states in rotating Bose–Einstein condensates’, Comm. Math. Sci. 3, 5788.
Ben Abdallah, N., Degond, P. and Gamba, I. M. (2002), ‘Coupling one-dimensional time-dependent classical and quantum transport models’, J. Math. Phys. 43, 124.
Benamou, J.-D. (1999), ‘Direct computation of multivalued phase space solutions for Hamilton–Jacobi equations’, Comm. Pure Appl. Math. 52, 14431475.
Benamou, J.-D. and Solliec, I. (2000), ‘An Eulerian method for capturing caustics’, J. Comput. Phys. 162, 132163.
Benamou, J.-D., Lafitte, O., Sentis, R. and Solliec, I. (2003), ‘A geometrical optics-based numerical method for high frequency electromagnetic fields computations near fold caustics I’, J. Comput. Appl. Math. 156, 93125.
Benedetto, D., Esposito, R. and Pulvirenti, M. (2004), ‘Asymptotic analysis of quantum scattering under mesoscopic scaling’, Asymptot. Anal. 40, 163187.
Bensoussan, A., Lions, J. L. and Papanicolaou, G. (1978), Asymptotic Analysis for Periodic Structures, Vol. 5, North-Holland.
Bloch, F. (1928), ‘Uber die Quantenmechanik der Elektronen in Kristallgittern’, Z. Phys. 52, 555600.
Bouchut, F., Jin, S. and Li, X. (2003), ‘Numerical approximations of pressureless and isothermal gas dynamics’, SIAM J. Numer. Anal. 41, 135158.
Bougacha, S., Akian, J.-L. and Alexandre, R. (2009), ‘Gaussian beams summation for the wave equation in a convex domain’, Comm. Math. Sci. 7, 9731008.
Brenier, Y. and Corrias, L. (1998), ‘A kinetic formulation for multi-branch entropy solutions of scalar conservation laws’, Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 169190.
Carles, R. (2000), ‘Geometric optics with caustic crossing for some nonlinear Schrödinger equations’, Indiana Univ. Math. J. 49, 475551.
Carles, R. (2001), ‘Remarques sur les mesures de Wigner’, CR Acad. Sci. Paris Sér. I: Math. 332, 981984.
Carles, R. (2007 a), ‘Geometric optics and instability for semi-classical Schrödinger equations’, Arch. Ration. Mech. Anal. 183, 525553.
Carles, R. (2007 b), ‘WKB analysis for nonlinear Schrödinger equations with potential’, Comm. Math. Phys. 269, 195221.
Carles, R. (2008), Semi-Classical Analysis for Nonlinear Schrödinger Equations, World Scientific.
Carles, R. and Gosse, L. (2007), ‘Numerical aspects of nonlinear Schrödinger equations in the presence of caustics’, Math. Models Methods Appl. Sci. 17, 1531– 1553.
Carles, R., Markowich, P. A. and Sparber, C. (2004), ‘Semiclassical asymptotics for weakly nonlinear Bloch waves’, J. Statist. Phys. 117, 343375.
Cazenave, T. (2003), Semilinear Schrödinger Equations, Vol. 10 of Courant Lecture Notes in Mathematics, Courant Institute of Mathematical Sciences, New York University.
Cervený, V. (2001), Seismic Ray Theory, Cambridge University Press.
Chan, T. F. and Shen, L. (1987), ‘Stability analysis of difference scheme for variable coefficient Schrödinger type equations’, SIAM J. Numer. Anal. 24, 336349.
Chan, T., Lee, D. and Shen, L. (1986), ‘Stable explicit schemes for equations of the Schrödinger type’, SIAM J. Numer. Anal. 23, 274281.
Cheng, L.-T., Kang, M., Osher, S., Shim, H. and Tsai, Y.-H. (2004), ‘Reflection in a level set framework for geometric optics’, CMES Comput. Model. Eng. Sci. 5, 347360.
Cheng, L.-T., Liu, H. and Osher, S. (2003), ‘Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations’, Comm. Math. Sci. 1, 593621.
Courant, R. and Hilbert, D. (1962), Methods of Mathematical Physics, Vol. 2, Interscience.
Crandall, M. G. and Lions, P.-L. (1983), ‘Viscosity solutions of Hamilton–Jacobi equations’, Trans. Amer. Math. Soc. 277, 142.
Degond, P., Jin, S. and Tang, M. (2008), ‘On the time splitting spectral method for the complex Ginzburg–Landau equation in the large time and space scale limit’, SIAM J. Sci. Comput. 30, 24662487.
Delfour, M., Fortin, M. and Payre, G. (1981), ‘Finite-difference solutions of a nonlinear Schrödinger equation’, J. Comput. Phys. 44, 277288.
Dell'Antonio, G. F. (1983), ‘Large time, small coupling behaviour of a quantum particle in a random field’, Ann. Inst. H. Poincaré Sect. A (NS) 39, 339384.
DiPerna, R. J. and Lions, P.-L. (1989), ‘Ordinary differential equations, transport theory and Sobolev spaces’, Invent. Math. 98, 511547.
Dörfler, W. (1998), ‘A time- and space-adaptive algorithm for the linear time dependent Schrödinger equation’, Numer. Math. 73, 419448.
Drukker, K. (1999), ‘Basics of surface hopping in mixed quantum/classical simulations’, J. Comput. Phys. 153, 225272.
Duistermaat, J. J. (1996), Fourier Integral Operators, Vol. 130 of Progress in Mathematics, Birkhäuser.
Dujardin, G. and Faou, E. (2007 a), ‘Long time behavior of splitting methods applied to the linear Schrödinger equation’, CR Math. Acad. Sci. Paris 344, 8992.
Dujardin, G. and Faou, E. (2007 b), ‘Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential’, Numer. Math. 108, 223262.
Engquist, B. and Runborg, O. (1996), ‘Multi-phase computations in geometrical optics’, J. Comput. Appl. Math. 74, 175192. TICAM Symposium (Austin, TX, 1995).
Engquist, B. and Runborg, O. (2003), Computational high frequency wave propagation. In Acta Numerica, Vol. 12, Cambridge University Press, pp. 181266.
Erdös, L. and Yau, H.-T. (2000), ‘Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation’, Comm. Pure Appl. Math. 53, 667735.
Faou, E. and Grebert, B. (2010), Resonances in long time integration of semi linear Hamiltonian PDEs. Preprint available at: www.irisa.fr/ipso/perso/faou/.
Fermanian Kammerer, C. and Lasser, C. (2003), ‘Wigner measures and codimension two crossings’, J. Math. Phys. 44, 507527.
Flaschka, H., Forest, M. G. and McLaughlin, D. W. (1980), ‘Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation’, Comm. Pure Appl. Math. 33, 739784.
Fomel, S. and Sethian, J. A. (2002), ‘Fast-phase space computation of multiple arrivals’, Proc. Nat. Acad. Sci. USA 99, 73297334.
Fornberg, B. (1996), A Practical Guide to Pseudospectral Methods, Vol. 1 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.
Fouque, J.-P., Garnier, J., Papanicolaou, G. and Sølna, K. (2007), Wave Propagation and Time Reversal in Randomly Layered Media, Vol. 56 of Stochastic Modelling and Applied Probability, Springer.
Fröhlich, J. and Spencer, T. (1983), ‘Absence of diffusion in the Anderson tight binding model for large disorder or low energy’, Comm. Math. Phys. 88, 151184.
Gauckler, L. and Lubich, C. (2010), ‘Splitting integrators for nonlinear Schrödinger equations over long times’, Found. Comput. Math. 10, 275302.
Gérard, P., Markowich, P. A., Mauser, N. J. and Poupaud, F. (1997), ‘Homogenization limits and Wigner transforms’, Comm. Pure Appl. Math. 50, 323379.
Gosse, L. (2002), ‘Using K-branch entropy solutions for multivalued geometric optics computations’, J. Comput. Phys. 180, 155182.
Gosse, L. (2006), ‘Multiphase semiclassical approximation of the one-dimensional harmonic crystal I: The periodic case’, J. Phys. A 39, 1050910521.
Gosse, L. and James, F. (2002), ‘Convergence results for an inhomogeneous system arising in various high frequency approximations’, Numer. Math. 90, 721753.
Gosse, L. and Markowich, P. A. (2004), ‘Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice I: Homogeneous problems’, J. Comput. Phys. 197, 387417.
Gosse, L. and Mauser, N. J. (2006), ‘Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice III: From ab initio models to WKB for Schrödinger–Poisson’, J. Comput. Phys. 211, 326346.
Gosse, L., Jin, S. and Li, X. (2003), ‘Two moment systems for computing multiphase semiclassical limits of the Schrödinger equation’, Math. Models Methods Appl. Sci. 13, 16891723.
Granastein, V. L., Parker, R. K. and Armstrong, C. (1999), ‘Vacuum electronics at the dawn of the twenty-first century’, Proc. IEEE 87, 702716.
Grenier, E. (1998), ‘Semiclassical limit of the nonlinear Schrödinger equation in small time’, Proc. Amer. Math. Soc. 126, 523530.
Guillot, J.-C., Ralston, J. and Trubowitz, E. (1988), ‘Semiclassical asymptotics in solid-state physics’, Comm. Math. Phys. 116, 401415.
Hagedorn, G. A. (1994), ‘Molecular propagation through electron energy level crossings’, Mem. Amer. Math. Soc. 111, #536.
Heller, E. J. (1981), ‘Frozen Gaussians: A very simple semiclassical approximation’, J. Chem. Phys. 75, 29232931.
Heller, E. J. (2006), ‘Guided Gaussian wave packets’, Acc. Chem. Res. 39, 127134.
Herman, M. and Kluk, E. (1984), ‘A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations’, J. Chem. Phys. 91, 29232931.
Hill, N. (1990), ‘Gaussian beam migration’, Geophysics 55, 14161428.
Ho, T. G., Landau, L. J. and Wilkins, A. J. (1993), ‘On the weak coupling limit for a Fermi gas in a random potential’, Rev. Math. Phys. 5, 209298.
Horenko, I., Salzmann, C., Schmidt, B. and Schuütte, C. (2002), ‘Quantum-classical Liouville approach to molecular dynamics: Surface hopping Gaussian phasespace packets’, J. Chem. Phys. 117, 11075.
Hörmander, L. (1985), The Analysis of Linear Partial Differential Operators III, Springer.
Huang, Z., Jin, S., Markowich, P. A. and Sparber, C. (2007), ‘A Bloch decomposition-based split-step pseudospectral method for quantum dynamics with periodic potentials’, SIAM J. Sci. Comput. 29, 515538.
Huang, Z., Jin, S., Markowich, P. A. and Sparber, C. (2008), ‘Numerical simulation of the nonlinear Schrödinger equation with multidimensional periodic potentials’, Multiscale Model. Simul. 7, 539564.
Huang, Z., Jin, S., Markowich, P. A. and Sparber, C. (2009), ‘On the Bloch decomposition based spectral method for wave propagation in periodic media’, Wave Motion 46, 1528.
Huang, Z., Jin, S., Markowich, P. A., Sparber, C. and Zheng, C. (2005), ‘A timesplitting spectral scheme for the Maxwell–Dirac system’, J. Comput. Phys. 208, 761789.
Jiang, G. and Tadmor, E. (1998), ‘Nonoscillatory central schemes for multidimensional hyperbolic conservation laws’, SIAM J. Sci. Comput. 19, 18921917.
Jin, S. (2009), Recent computational methods for high frequency waves in heterogeneous media. In Industrial and Applied Mathematics in China, Vol. 10 of Ser. Contemp. Appl. Math. CAM, Higher Education Press, Beijing, pp. 4964.
Jin, S. and Li, X. (2003), ‘Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner’, Phys. D 182, 4685.
Jin, S. and Liao, X. (2006), ‘A Hamiltonian-preserving scheme for high frequency elastic waves in heterogeneous media’, J. Hyperbolic Diff. Eqn. 3, 741777.
Jin, S. and Novak, K. A. (2006), ‘A semiclassical transport model for thin quantum barriers’, Multiscale Model. Simul. 5, 10631086.
Jin, S. and Novak, K. A. (2007), ‘A semiclassical transport model for two-dimensional thin quantum barriers’, J. Comput. Phys. 226, 16231644.
Jin, S. and Novak, K. A. (2010), ‘A coherent semiclassical transport model for purestate quantum scattering’, Comm. Math. Sci. 8, 253275.
Jin, S. and Osher, S. (2003), ‘A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDEs and Hamilton–Jacobi equations’, Comm. Math. Sci. 1, 575591.
Jin, S. and Wen, X. (2005), ‘Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials’, Comm. Math. Sci. 3, 285315.
Jin, S. and Wen, X. (2006 a), ‘A Hamiltonian-preserving scheme for the Liouville equation of geometrical optics with partial transmissions and reflections’, SIAM J. Numer. Anal. 44, 18011828.
Jin, S. and Wen, X. (2006 b), ‘Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds’, J. Comput. Phys. 214, 672697.
Jin, S. and Xin, Z. (1998), ‘Numerical passage from systems of conservation laws to Hamilton–Jacobi equations, relaxation schemes’, SIAM J. Numer. Anal. 35, 23852404.
Jin, S. and Yang, X. (2008), ‘Computation of the semiclassical limit of the Schrödinger equation with phase shift by a level set method’, J. Sci. Comput. 35, 144169.
Jin, S. and Yin, D. (2008 a), ‘Computation of high frequency wave diffraction by a half plane via the Liouville equation and geometric theory of diffraction’, Comm. Comput. Phys. 4, 11061128.
Jin, S. and Yin, D. (2008 b), ‘Computational high frequency waves through curved interfaces via the Liouville equation and geometric theory of diffraction’, J. Comput. Phys. 227, 61066139.
Jin, S. and Yin, D. (2011), ‘Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction’, Kinetic and Related Models 4, 295316.
Jin, S., Levermore, C. D. and McLaughlin, D. W. (1999), ‘The semiclassical limit of the defocusing NLS hierarchy’, Comm. Pure Appl. Math. 52, 613654.
Jin, S., Liao, X. and Yang, X. (2008 a), ‘Computation of interface reflection and regular or diffuse transmission of the planar symmetric radiative transfer equation with isotropic scattering and its diffusion limit’, SIAM J. Sci. Comput. 30, 19922017.
Jin, S., Liu, H., Osher, S. and Tsai, R. (2005 a), ‘Computing multi-valued physical observables for the high frequency limit of symmetric hyperbolic systems’, J. Comput. Phys. 210, 497518.
Jin, S., Liu, H., Osher, S. and Tsai, Y.-H. R. (2005 b), ‘Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation’, J. Comput. Phys. 205, 222241.
Jin, S., Markowich, P. A. and Zheng, C. (2004), ‘Numerical simulation of a generalized Zakharov system’, J. Comput. Phys. 201, 376395.
Jin, S., Qi, P. and Zhang, Z. (2011), ‘An Eulerian surface hopping method for the Schrödinger equation with conical crossings’, Multiscale Model. Simul. 9, 258281.
Jin, S., Wu, H. and Yang, X. (2008 b), ‘Gaussian beam methods for the Schrödinger equation in the semi-classical regime: Lagrangian and Eulerian formulations’, Comm. Math. Sci. 6, 9951020.
Jin, S., Wu, H. and Yang, X. (2010 a), ‘A numerical study of the Gaussian beam methods for Schrödinger–Poisson equations’, J. Comput. Math. 28, 261272.
Jin, S., Wu, H. and Yang, X. (2011), ‘Semi-Eulerian and high order Gaussian beam methods for the Schrödinger equation in the semiclassical regime’, Comm. Comput. Phys. 9, 668687.
Jin, S., Wu, H., Yang, X. and Huang, Z. (2010 b), ‘Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials’, J. Comput. Phys. 229, 48694883.
Kamvissis, S., McLaughlin, K. D. T.-R. and Miller, P. D. (2003), Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Vol. 154 of Annals of Mathematics Studies, Princeton University Press.
Kay, K. (1994), ‘Integral expressions for the semi-classical time-dependent propagator’, J. Chem. Phys. 100, 4437–4392.
Kay, K. (2006), ‘The Herman–Kluk approximation: Derivation and semiclassical corrections’, J. Chem. Phys. 322, 312.
Keller, J. B. and Lewis, R. M. (1995), Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations. In Surveys in Applied Mathematics, Vol. 1, Plenum, pp. 182.
Kitada, H. (1980), ‘On a construction of the fundamental solution for Schrödinger equations’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 193226.
Klein, C. (2008), ‘Fourth order time-stepping for low dispersion Korteweg–de Vries and nonlinear Schrödinger equations’, Electron. Trans. Numer. Anal. 29, 116– 135.
Krasny, R. (1986), ‘A study of singularity formation in a vortex sheet by the pointvortex approximation’, J. Fluid Mech. 167, 6593.
Kube, S., Lasser, C. and Weber, M. (2009), ‘Monte Carlo sampling of Wigner functions and surface hopping quantum dynamics’, J. Comput. Phys. 228, 19471962.
Landau, L. (1932), ‘Zur Theorie der Energieübertragung II’, Physics of the Soviet Union 2, 4651.
Lasser, C. and Teufel, S. (2005), ‘Propagation through conical crossings: An asymptotic semigroup’, Comm. Pure Appl. Math. 58, 11881230.
Lasser, C., Swart, T. and Teufel, S. (2007), ‘Construction and validation of a rigorous surface hopping algorithm for conical crossings’, Comm. Math. Sci. 5, 789814.
Lax, P. D. (1957), ‘Asymptotic solutions of oscillatory initial value problems’, Duke Math. J. 24, 627646.
Leimkuhler, B. and Reich, S. (2004), Simulating Hamiltonian Dynamics, Vol. 14 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press.
Leung, S. and Qian, J. (2009), ‘Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime’, J. Comput. Phys. 228, 29512977.
Leung, S., Qian, J. and Burridge, R. (2007), ‘Eulerian Gaussian beams for high frequency wave propagation’, Geophysics 72, 6176.
Levermore, C. (1996), ‘Moment closure hierarchies for kinetic theories’, J. Statist. Phys. 83, 10211065.
Li, X., Wöhlbier, J. G., Jin, S. and Booske, J. (2004), ‘An Eulerian method for computing multi-valued solutions to the Euler–Poisson equations and applications to wave breaking in klystrons’, Phys. Rev. E 70, 016502.
Lions, P.-L. and Paul, T. (1993), ‘Sur les mesures de Wigner’, Rev. Mat. Iberoamericana 9, 553618.
Liu, H. and Ralston, J. (2010), ‘Recovery of high frequency wave fields from phase space-based measurements’, Multiscale Model. Simul. 8, 622644.
Liu, H. and Tadmor, E. (2002), ‘Semi-classical limit of the nonlinear Schrödinger– Poisson equation with sub-critical initial data’, Methods Appl. Anal. 9, 517532.
Liu, H. and Wang, Z. (2007), ‘A field-space-based level set method for computing multi-valued solutions to 1D Euler–Poisson equations’, J. Comput. Phys. 225, 591614.
Liu, H., Runborg, O. and Tanushev, N. (2011), Error estimates for Gaussian beam superpositions. Submitted.
Lu, J. and Yang, X. (2011), ‘Frozen Gaussian approximation for high frequency wave propagation’, Commun. Math. Sci. 9, 663683.
Lubich, C. (2008), ‘On splitting methods for Schrödinger–Poisson and cubic nonlinear Schrödinger equations’, Math. Comp. 77, 21412153.
Majda, A. J., Majda, G. and Zheng, Y. X. (1994), ‘Concentrations in the one-dimensional Vlasov–Poisson equations I: Temporal development and non-unique weak solutions in the single component case’, Phys. D 74, 268300.
Markowich, P. A. and Mauser, N. J. (1993), ‘The classical limit of a self-consistent quantum-Vlasov equation in 3D’, Math. Models Methods Appl. Sci. 3, 109– 124.
Markowich, P. A. and Poupaud, F. (1999), ‘The pseudo-differential approach to finite differences revisited’, Calcolo 36, 161186.
Markowich, P. A., Mauser, N. J. and Poupaud, F. (1994), ‘A Wigner-function approach to (semi)classical limits: Electrons in a periodic potential’, J. Math. Phys. 35, 10661094.
Markowich, P. A., Pietra, P. and Pohl, C. (1999), ‘Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit’, Numer. Math. 81, 595630.
Maslov, V., ed. (1981), Semiclassical Approximations in Quantum Mechanics, Reidel, Dordrecht.
McLachlan, R. I. and Quispel, G. R. W. (2002), Splitting methods. In Acta Numerica, Vol. 11, Cambridge University Press, pp. 341434.
Miller, L. (2000), ‘Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary’, J. Math. Pures Appl. (9) 79, 227269.
Motamed, M. and Runborg, O. (2010), ‘Taylor expansion and discretization errors in Gaussian beam superposition’, Wave Motion 47, 421439.
Nier, F. (1995), ‘Asymptotic analysis of a scaled Wigner equation and quantum scattering’, Transport Theory Statist. Phys. 24, 591628.
Nier, F. (1996), ‘A semi-classical picture of quantum scattering’, Ann. Sci. École Norm. Sup. (4) 29, 149183.
Osher, S. and Sethian, J. A. (1988), ‘Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations’, J. Comput. Phys. 79, 1249.
Osher, S., Cheng, L.-T., Kang, M., Shim, H. and Tsai, Y.-H. (2002), ‘Geometric optics in a phase-space-based level set and Eulerian framework’, J. Comput. Phys. 179, 622648.
Panati, G., Spohn, H. and Teufel, S. (2006), Motion of electrons in adiabatically perturbed periodic structures. In Analysis, Modeling and Simulation of Mul-tiscale Problems, Springer, pp. 595617.
Pathria, D. and Morris, J. (1990), ‘Pseudo-spectral solution of nonlinear Schrödinger equations’, J. Comput. Phys. 87, 108125.
Peng, D., Merriman, B., Osher, S., Zhao, H. and Kang, M. (1999), ‘A PDE-based fast local level set method’, J. Comput. Phys. 155, 410438.
Perthame, B. and Simeoni, C. (2001), ‘A kinetic scheme for the Saint-Venant system with a source term’, Calcolo 38, 201231.
Popov, M. M. (1982), ‘A new method of computation of wave fields using Gaussian beams’, Wave Motion 4, 8597.
Qian, J. and Ying, L. (2010), ‘Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation’, J. Comput. Phys. 229, 78487873.
Ralston, J. (1982), Gaussian beams and the propagation of singularities. In Studies in Partial Differential Equations, Vol. 23 of MAA Stud. Math., Mathematical Association of America, pp. 206248.
Reed, M. and Simon, B. (1975), Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press.
Reed, M. and Simon, B. (1976), Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press.
Robert, D. (2010), ‘On the Herman–Kluk semiclassical approximation’, Rev. Math. Phys. 22, 11231145.
Runborg, O. (2000), ‘Some new results in multiphase geometrical optics’, M2AN Math. Model. Numer. Anal. 34, 12031231.
Ryzhik, L., Papanicolaou, G. and Keller, J. B. (1996), ‘Transport equations for elastic and other waves in random media’, Wave Motion 24, 327370.
Shapere, A. and Wilczek, F., eds (1989), Geometric Phases in Physics, Vol. 5 of Advanced Series in Mathematical Physics, World Scientific.
Sholla, D. and Tully, J. (1998), ‘A generalized surface hopping method’, J. Chem. Phys. 109, 7702.
Sparber, C., Markowich, P. and Mauser, N. (2003), ‘Wigner functions versus WKB-methods in multivalued geometrical optics’, Asymptot. Anal. 33, 153187.
Spohn, H. (1977), ‘Derivation of the transport equation for electrons moving through random impurities’, J. Statist. Phys. 17, 385412.
Spohn, H. and Teufel, S. (2001), ‘Adiabatic decoupling and time-dependent Born– Oppenheimer theory’, Comm. Math. Phys. 224, 113132.
Strikwerda, J. C. (1989), Finite Difference Schemes and Partial Differential Equations, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software.
Sulem, C. and Sulem, P.-L. (1999), The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Vol. 139 of Applied Mathematical Sciences, Springer.
Sundaram, G. and Niu, Q. (1999), ‘Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects’, Phys. Rev. B 59, 14915– 14925.
Swart, T. and Rousse, V. (2009), ‘A mathematical justification for the Herman–Kluk propagator’, Comm. Math. Phys. 286, 725750.
Taha, T. and Ablowitz, M. J. (1984), ‘Analytical and numerical aspects of certain nonlinear evolution equations II: Numerical, nonlinear Schrödinger equations’, J. Comput. Phys. 55, 203230.
Tanushev, N. M. (2008), ‘Superpositions and higher order Gaussian beams’, Comm. Math. Sci. 6, 449475.
Tanushev, N. M., Engquist, B. and Tsai, R. (2009), ‘Gaussian beam decomposition of high frequency wave fields’, J. Comput. Phys. 228, 88568871.
Tartar, L. (1990), ‘H-measures: A new approach for studying homogenisation, oscillations and concentration effects in partial differential equations’, Proc. Roy. Soc. Edinburgh Sect. A 115, 193230.
Teufel, S. (2003), Adiabatic Perturbation Theory in Quantum Dynamics, Vol. 1821 of Lecture Notes in Mathematics, Springer.
Tully, J. (1990), ‘Molecular dynamics with electronic transitions’, J. Chem. Phys. 93, 10611071.
Tully, J. and Preston, R. (1971), ‘Trajectory surface hopping approach to non-adiabatic molecular collisions: The reaction of h+ with d2’, J. Chem. Phys. 55, 562572.
Wei, D., Jin, S., Tsai, R. and Yang, X. (2010), ‘A level set method for the semiclas-sical limit of the Schrödinger equation with discontinuous potentials’, Comm. Comput. Phys. 229, 74407455.
Wen, X. (2009), ‘Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients II: Some related binomial coefficient inequalities’, J. Comput. Math. 27, 474483.
Wen, X. (2010), ‘High order numerical methods to three dimensional delta function integrals in level set methods’, SIAM J. Sci. Comput. 32, 12881309.
Wen, X. and Jin, S. (2009), ‘The l1-stability of a Hamiltonian-preserving scheme for the Liouville equation with discontinuous potentials’, J. Comput. Math. 27, 4567.
Whitham, G. (1974), Linear and Nonlinear Waves, Wiley-Interscience.
Wigner, E. P. (1932), ‘On the quantum correction for thermodynamic equilibrium’, Phys. Rev. 40, 749759.
Wilcox, C. H. (1978), ‘Theory of Bloch waves’, J. Anal. Math. 33, 146167.
Wöhlbier, J. G., Jin, S. and Sengele, S. (2005), ‘Eulerian calculations of wave breaking and multivalued solutions in a traveling wave tube’, Physics of Plasmas 12, 023106023113.
Wu, L. (1996), ‘Dufort–Frankel-type methods for linear and nonlinear Schrödinger equations’, SIAM J. Numer. Anal. 33, 15261533.
Yin, D. and Zheng, C. (2011), Composite Gaussian beam approximation method for multi-phased wave functions. Submitted.
Ying, L. and Candés, E. J. (2006), ‘The phase flow method’, J. Comput. Phys. 220, 184215.
Zener, C. (1932), ‘Non-adiabatic crossing of energy levels’, Proc. Royal Soc. London, Ser. A 137, 692702.
Zhang, P. (2002), ‘Wigner measure and the semiclassical limit of Schrödinger– Poisson equations’, SIAM J. Math. Anal. 34, 700718.
Zheng, C. (2006), ‘Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations’, J. Comput. Phys. 215, 552565.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed