Skip to main content
×
×
Home

Modern regularization methods for inverse problems

  • Martin Benning (a1) and Martin Burger (a2)
Abstract

Regularization methods are a key tool in the solution of inverse problems. They are used to introduce prior knowledge and allow a robust approximation of ill-posed (pseudo-) inverses. In the last two decades interest has shifted from linear to nonlinear regularization methods, even for linear inverse problems. The aim of this paper is to provide a reasonably comprehensive overview of this shift towards modern nonlinear regularization methods, including their analysis, applications and issues for future research.

In particular we will discuss variational methods and techniques derived from them, since they have attracted much recent interest and link to other fields, such as image processing and compressed sensing. We further point to developments related to statistical inverse problems, multiscale decompositions and learning theory.

Copyright
References
Hide All
Acar, R. and Vogel, C. R. (1994), ‘Analysis of bounded variation penalty methods for ill-posed problems’, Inverse Problems 10, 1217.
Agapiou, S., Burger, M., Dashti, M. and Helin, T. (2018), ‘Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems’, Inverse Problems 34, 0450002.
Aja-Fernandez, S., Alberola-Lopez, C. and Westin, C. F. (2008), ‘Noise and signal estimation in magnitude MRI and Rician distributed images: A LMMSE approach’, IEEE Trans. Image Process. 17, 13831398.
Allard, W. K. (2007), ‘Total variation regularization for image denoising, I: Geometric theory’, SIAM J. Math. Anal. 39, 11501190.
Ambrosio, L. and Tortorelli, V. M. (1990), ‘Approximation of functional depending on jumps by elliptic functional via t-convergence’, Commun. Pure Appl. Math. 43, 9991036.
Ambrosio, L., Fusco, N. and Pallara, D. (2000), Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, Clarendon Press, Oxford University Press.
Anderssen, R. (1986), The linear functional strategy for improperly posed problems. In Inverse Problems (Cannon, J. R. and Hornung, U., eds), Springer, pp. 1130.
Attouch, H. and Bolte, J. (2009), ‘On the convergence of the proximal algorithm for nonsmooth functions involving analytic features’, Math. Program. 116, 516.
Attouch, H., Bolte, J. and Svaiter, B. F. (2013), ‘Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods’, Math. Program. 137, 91129.
Attouch, H., Bolte, J., Redont, P. and Soubeyran, A. (2010), ‘Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka–Łojasiewicz inequality’, Math. Oper. Res. 35, 438457.
Aubert, G. and Aujol, J.-F. (2008), ‘A variational approach to removing multiplicative noise’, SIAM J. Appl. Math. 68, 925946.
Bachmayr, M. and Burger, M. (2009), ‘Iterative total variation schemes for nonlinear inverse problems’, Inverse Problems 25, 105004.
Backus, G. and Gilbert, F. (1968), ‘The resolving power of gross earth data’, Geophys. J. Internat. 16, 169205.
Bakushinskii, A. B. (1967), ‘A general method of constructing regularizing algorithms for a linear incorrect equation in Hilbert space’, Zh. Vychisl. Mat. Mat. Fiz. 7, 672677.
Bakushinskii, A. B. (1973), ‘On the proof of the “discrepancy principle”’, Differential and Integral Equations (Differents. i integr. un-niya), Izd-vo IGU, Irkutsk.
Bakushinskii, A. B. (1977), ‘Methods for solving monotonic variational inequalities, based on the principle of iterative regularization’, USSR Comput. Math. Math. Phys. 17, 1224.
Bakushinskii, A. B. (1979), ‘On the principle of iterative regularization’, USSR Comput. Math. Math. Phys. 19, 256260.
Bakushinskii, A. B. (1984), ‘Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion’, USSR Comput. Math. Math. Phys. 24, 181182.
Banks, H. and Kunisch, K. (1989), Estimation Techniques for Distributed Parameter Systems, Birkhäuser.
Bates, D. M. and Wahba, G. (1983), A truncated singular value decomposition and other methods for generalized cross-validation. Technical report 715, Department of Statistics, University of Wisconsin.
Bauer, F., Hohage, T. and Munk, A. (2009), ‘Iteratively regularized Gauss–Newton method for nonlinear inverse problems with random noise’, SIAM J. Numer. Anal. 47, 18271846.
Bauschke, H. H., Bolte, J. and Teboulle, M. (2016), ‘A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications’, Math. Oper. Res. 42, 330348.
Bauschke, H. H., Borwein, J. M. and Combettes, P. L. (2001), ‘Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces’, Commun. Contemp. Math. 3, 615647.
Beck, A. and Teboulle, M. (2003), ‘Mirror descent and nonlinear projected subgradient methods for convex optimization’, Oper. Res. Lett. 31, 167175.
Benning, M. (2011), Singular regularization of inverse problems: Bregman distances and their applications to variational frameworks with singular regularization energies. PhD thesis, Westfälische Wilhelms-Universität Münster, Germany.
Benning, M. and Burger, M. (2013), ‘Ground states and singular vectors of convex variational regularization methods’, Methods Appl. Anal. 20, 295334.
Benning, M., Betcke, M. M., Ehrhardt, M. J. and Schönlieb, C.-B. (2017a), Choose your path wisely: Gradient descent in a Bregman distance framework. arXiv:1712.04045
Benning, M., Betcke, M. M., Ehrhardt, M. J. and Schönlieb, C.-B. (2017b), Gradient descent in a generalised Bregman distance framework. In Geometric Numerical Integration and its Applications, (Quispel, G. R. W. et al. , eds), Vol. 74 of MI Lecture Notes series of Kyushu University, pp. 4045.
Benning, M., Brune, C., Burger, M. and Müller, J. (2013), ‘Higher-order TV methods: Enhancement via Bregman iteration’, J. Sci. Comput. 54, 269310.
Benning, M., Gilboa, G. and Schönlieb, C.-B. (2016), ‘Learning parametrised regularisation functions via quotient minimisation’, Proc. Appl. Math. Mech. 16, 933936.
Benning, M., Gilboa, G., Grah, J. S. and Schönlieb, C.-B. (2017c), Learning filter functions in regularisers by minimising quotients. In SSVM 2017: Scale Space and Variational Methods in Computer Vision (Lauze, F. et al. , eds), Springer, pp. 511523.
Benning, M., Gladden, L., Holland, D., Schönlieb, C.-B. and Valkonen, T. (2014), ‘Phase reconstruction from velocity-encoded MRI measurements: A survey of sparsity-promoting variational approaches’, J. Magnetic Resonance 238, 2643.
Benning, M., Knoll, F., Schönlieb, C.-B. and Valkonen, T. (2015), Preconditioned ADMM with nonlinear operator constraint. In System Modeling and Optimization (Bociu, L. et al. , eds), Springer, pp. 117126.
Benning, M., Möller, M., Nossek, R. Z., Burger, M., Cremers, D., Gilboa, G. and Schönlieb, C.-B. (2017d), Nonlinear spectral image fusion. In SSVM 2017: Scale Space and Variational Methods in Computer Vision (Lauze, F. et al. , eds), Springer, pp. 4153.
Bergounioux, M. (2016), ‘Mathematical analysis of a inf-convolution model for image processing’, J. Optim. Theory Appl. 168, 121.
Bergounioux, M. and Papoutsellis, E. (2018), ‘An anisotropic inf-convolution BV type model for dynamic reconstruction’, SIAM J. Imaging Sci. 11, 129163.
Bertero, M. and Boccacci, P. (1998), Introduction to Inverse Problems in Imaging, CRC press.
Bertsekas, D. P. (2011), Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. In Optimization for Machine Learning (Sra, S. et al. , eds), MIT Press, pp. 85120.
Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., Tenorio, L., van Bloemen Waanders, B., Willcox, K. and Marzouk, Y. (2011), Large-Scale Inverse Problems and Quantification of Uncertainty, Wiley.
Bissantz, N., Hohage, T. and Munk, A. (2004), ‘Consistency and rates of convergence of nonlinear Tikhonov regularization with random noise’, Inverse Problems 20, 1773.
Bissantz, N., Hohage, T., Munk, A. and Ruymgaart, F. (2007), ‘Convergence rates of general regularization methods for statistical inverse problems and applications’, SIAM J. Numer. Anal. 45, 26102636.
Bleyer, I. and Leitao, A. (2009), ‘On Tikhonov functionals penalized by Bregman distances’, CUBO 11, 99115.
Blomgren, P. and Chan, T. F. (1998), ‘Color TV: Total variation methods for restoration of vector-valued images’, IEEE Trans. Image Process. 7, 304309.
Bolte, J., Daniilidis, A. and Lewis, A. (2007), ‘The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems’, SIAM J. Optim. 17, 12051223.
Bolte, J., Daniilidis, A., Ley, O. and Mazet, L. (2010), ‘Characterizations of Łojasiewicz inequalities: Subgradient flows, talweg, convexity’, Trans. Amer. Math. Soc. 362, 33193363.
Bolte, J., Sabach, S. and Teboulle, M. (2014), ‘Proximal alternating linearized minimization for nonconvex and nonsmooth problems’, Math. Program. 146, 459494.
Bolte, J., Sabach, S., Teboulle, M. and Vaisbourd, Y. (2017), First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems. arXiv:1706.06461
Bonettini, S., Loris, I., Porta, F. and Prato, M. (2016), ‘Variable metric inexact line-search based methods for nonsmooth optimization’, SIAM J. Optim. 26, 891921.
Bonettini, S., Loris, I., Porta, F., Prato, M. and Rebegoldi, S. (2017), ‘On the convergence of a linesearch based proximal-gradient method for nonconvex optimization’, Inverse Problems 33, 055005.
Boţ, R. I. and Csetnek, E. R. (2017), ‘Proximal-gradient algorithms for fractional programming’, Optimization 66, 13831396.
Bredies, K. and Holler, M. (2014), ‘Regularization of linear inverse problems with total generalized variation’, J. Inverse Ill-Posed Probl. 22, 871913.
Bredies, K. and Holler, M. (2015a), ‘A TGV-based framework for variational image decompression, zooming and reconstruction, I: Analytics’, SIAM J. Imaging Sci. 8, 28142850.
Bredies, K. and Holler, M. (2015b), ‘A TGV-based framework for variational image decompression, zooming, and reconstruction, II: Numerics’, SIAM J. Imaging Sci. 8, 28512886.
Bredies, K. and Pikkarainen, H. K. (2013), ‘Inverse problems in spaces of measures’, ESAIM Control Optim. Calc. Var. 19, 190218.
Bredies, K. and Valkonen, T. (2011), Inverse problems with second-order total generalized variation constraints. In Proceedings of SampTA 2011: 9th International Conference on Sampling Theory and Applications, Singapore.
Bredies, K., Kunisch, K. and Pock, T. (2010), ‘Total generalized variation’, SIAM J. Imaging Sci. 3, 492526.
Bregman, L. (1967), ‘The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming’, USSR Comp. Math. Math. Phys. 7, 200217.
Bresson, X. and Chan, T. F. (2008), ‘Fast dual minimization of the vectorial total variation norm and applications to color image processing’, Inverse Probl. Imaging 2, 455484.
Bresson, X., Laurent, T., Uminsky, D. and Brecht, J. V. (2012), Convergence and energy landscape for Cheeger cut clustering. In NIPS 2012: Advances in Neural Information Processing Systems 25 (Pereira, F. et al. , eds), Curran Associates, pp. 13851393.
Brinkmann, E.-M., Burger, M., Rasch, J. and Sutour, C. (2017), ‘Bias reduction in variational regularization’, J. Math. Imaging Vision 59, 534566.
Brune, C., Sawatzky, A. and Burger, M. (2009), Bregman-EM-TV methods with application to optical nanoscopy. In SSVM 2009: Scale Space and Variational Methods in Computer Vision, (Tai, X.-C. et al. , eds), Vol. 5567 of Lecture Notes in Computer Science, Springer, pp. 235246.
Brune, C., Sawatzky, A. and Burger, M. (2009c), Primal and dual Bregman methods with application to optical nanoscopy. CAM Report 09-47, UCLA.
Brune, C., Sawatzky, A. and Burger, M. (2011), ‘Primal and dual Bregman methods with application to optical nanoscopy’, Int. J. Comput. Vis. 92, 211229.
Bui-Thanh, T., Willcox, K. and Ghattas, O. (2008), ‘Model reduction for large-scale systems with high-dimensional parametric input space’, SIAM J. Sci. Comput. 30, 32703288.
Bungert, L., Coomes, D. A., Ehrhardt, M. J., Rasch, J., Reisenhofer, R. and Schönlieb, C.-B. (2018), ‘Blind image fusion for hyperspectral imaging with the directional total variation’, Inverse Problems 34, 044003.
Burger, M. (2016), Bregman distances in inverse problems and partial differential equations. In Advances in Mathematical Modeling, Optimization and Optimal Control (Hiriart-Urruty, J.-B. et al. , eds), Springer, pp. 333.
Burger, M. and Osher, S. (2004), ‘Convergence rates of convex variational regularization’, Inverse Problems 20, 1411.
Burger, M. and Osher, S. (2013), A guide to the TV zoo. In Level Set and PDE Based Reconstruction Methods in Imaging (Burger, M. et al. , eds), Springer, pp. 170.
Burger, M., Eckardt, L., Gilboa, G. and Moeller, M. (2015a), Spectral representations of one-homogeneous functionals. In SSVM 2015: Scale Space and Variational Methods in Computer Vision (Aujol, J.-F. et al. , eds), Springer, pp. 1627.
Burger, M., Flemming, J. and Hofmann, B. (2013a), ‘Convergence rates in -regularization if the sparsity assumption fails’, Inverse Problems 29, 025013.
Burger, M., Frick, K., Osher, S. and Scherzer, O. (2007a), ‘Inverse total variation flow’, Multiscale Model. Simul. 6, 366395.
Burger, M., Gilboa, G., Moeller, M., Eckardt, L. and Cremers, D. (2016a), ‘Spectral decompositions using one-homogeneous functionals’, SIAM J. Imaging Sci. 9, 13741408.
Burger, M., Gilboa, G., Osher, S. and Xu, J. et al. (2006), ‘Nonlinear inverse scale space methods’, Commun. Math. Sci. 4, 179212.
Burger, M., Helin, T. and Kekkonen, H. (2016b), Large noise in variational regularization. arXiv:1602.00520
Burger, M., Modersitzki, J. and Ruthotto, L. (2013b), ‘A hyperelastic regularization energy for image registration’, SIAM J. Sci. Comput. 35, B132B148.
Burger, M., Moeller, M., Benning, M. and Osher, S. (2013c), ‘An adaptive inverse scale space method for compressed sensing’, 82, 269–299.
Burger, M., Müller, J., Papoutsellis, E. and Schönlieb, C.-B. (2014), ‘Total variation regularization in measurement and image space for PET reconstruction’, Inverse Problems 30, 105003.
Burger, M., Osher, S., Xu, J. and Gilboa, G. (2005), Nonlinear inverse scale space methods for image restoration. In VLSM 2005: Variational, Geometric, and Level Set Methods in Computer Vision (Paragios, N. et al. , eds), Springer, pp. 2536.
Burger, M., Papafitsoros, K., Papoutsellis, E. and Schönlieb, C.-B. (2015b), System Modeling and Optimization, (Bociu, L. et al. , eds), Springer, pp. 169179.
Burger, M., Papafitsoros, K., Papoutsellis, E. and Schönlieb, C.-B. (2016c), ‘Infimal convolution regularisation functionals of BV and spaces, I: The finite case’, J. Math. Imaging Vision 55, 343369.
Burger, M., Resmerita, E. and He, L. (2007b), ‘Error estimation for Bregman iterations and inverse scale space methods in image restoration’, Computing 81, 109135.
Cai, J.-F. and Osher, S. (2013), ‘Fast singular value thresholding without singular value decomposition’, Methods Appl. Anal. 20, 335352.
Cai, J.-F., Candès, E. J. and Shen, Z. (2010), ‘A singular value thresholding algorithm for matrix completion’, SIAM J. Optim. 20, 19561982.
Cai, J.-F., Osher, S. and Shen, Z. (2009a), ‘Convergence of the linearized Bregman iteration for -norm minimization’, Math. Comp. 78, 21272136.
Cai, J.-F., Osher, S. and Shen, Z. (2009b), ‘Linearized Bregman iterations for compressed sensing’, Math. Comp. 78, 15151536.
Cakoni, F. and Colton, D. (2005), ‘Open problems in the qualitative approach to inverse electromagnetic scattering theory’, European J. Appl. Math. 16, 411425.
Calatroni, L., De los Reyes, J. C. and Schönlieb, C.-B. (2013), Dynamic sampling schemes for optimal noise learning under multiple nonsmooth constraints. In System Modeling and Optimization (Pötzsche, C. et al. , eds), Springer, pp. 8595.
Calatroni, L., De los Reyes, J. C. and Schönlieb, C.-B. (2017), ‘Infimal convolution of data discrepancies for mixed noise removal’, SIAM J. Imaging Sci. 10, 11961233.
Callaghan, P. T. (1993), Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press.
Callaghan, P. T. (1999), ‘Rheo-NMR: Nuclear magnetic resonance and the rheology of complex fluids’, Rep. Progr. Phys. 62, 599.
Campisi, P. and Egiazarian, K. (2016), Blind Image Deconvolution: Theory and Applications, CRC press.
Candès, E. J. and Donoho, D. L. (2000a), Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Technical report, Department of Statistics, Stanford University.
Candès, E. J. and Donoho, D. L. (2000b), Curvelets, multiresolution representation, and scaling laws. In SPIE Wavelet Applications in Signal and Image Processing VIII, pp. 112.
Candès, E. J. and Donoho, D. L. (2002), ‘Recovering edges in ill-posed inverse problems: Optimality of curvelet frames’, Ann. Statist. 30, 784842.
Candès, E. J. and Fernandez-Granda, C. (2013), ‘Super-resolution from noisy data’, J. Fourier Anal. Appl. 19, 12291254.
Candès, E. J. and Fernandez-Granda, C. (2014), ‘Towards a mathematical theory of super-resolution’, Commun. Pure Appl. Math. 67, 906956.
Candès, E. J. and Recht, B. (2009), ‘Exact matrix completion via convex optimization’, Found. Comput. Math. 9, 717.
Candès, E. J. and Romberg, J. (2007), ‘Sparsity and incoherence in compressive sampling’, Inverse Problems 23, 969.
Candès, E. J. and Tao, T. (2004a), ‘Decoding by linear programming’, IEEE Trans. Inform. Theory 51, 42034215.
Candès, E. J. and Tao, T. (2004b), ‘Near-optimal signal recovery from random projections: Universal encoding strategies’, IEEE Trans. Inform. Theory 52, 54065425.
Candès, E. J., Li, X., Ma, Y. and Wright, J. (2011), ‘Robust principal component analysis?’, J. Assoc. Comput. Mach. 58, 11.
Candès, E. J., Romberg, J. and Tao, T. (2006), ‘Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inform. Theory 52, 489509.
Caselles, V., Chambolle, A. and Novaga, M. (2007), ‘The discontinuity set of solutions of the TV denoising problem and some extensions’, Multiscale Model. Simul. 6, 879894.
Castillo, I. and Nickl, R. et al. (2014), ‘On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures’, Ann. Statist. 42, 19411969.
Cavalier, L. (2008), ‘Nonparametric statistical inverse problems’, Inverse Problems 24, 034004.
Censor, Y. and Zenios, S. A. (1992), ‘Proximal minimization algorithm withd-functions’, J. Optim. Theory Appl. 73, 451464.
Chadan, K., Colton, D., Päivärinta, L. and Rundell, W. (1997), An Introduction to Inverse Scattering and Inverse Spectral Problems, SIAM.
Chambolle, A. (2004), ‘An algorithm for total variation minimization and applications’, J. Math. Imaging Vision 20, 8997.
Chambolle, A. and Lions, P.-L. (1997), ‘Image recovery via total variation minimization and related problems’, Numer. Math. 76, 167188.
Chambolle, A. and Pock, T. (2011), ‘A first-order primal–dual algorithm for convex problems with applications to imaging’, J. Math. Imaging Vision 40, 120145.
Chambolle, A. and Pock, T. (2016), An introduction to continuous optimization for imaging. In Acta Numerica, Vol. 25, Cambridge University Press, pp. 161319.
Chambolle, A., Caselles, V., Cremers, D., Novaga, M. and Pock, T. (2010), An introduction to total variation for image analysis. In Theoretical Foundations and Numerical Methods for Sparse Recovery, (Fornasier, M., ed.), Vol. 9 of Radon Series on Computational and Applied Mathematics, De Gruyter, pp. 263340.
Chan, T. F. and Shen, J. (2005), Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM.
Chan, T. F., Esedoglu, S. and Park, F. (2010), A fourth order dual method for staircase reduction in texture extraction and image restoration problems. In ICIP 2010: 17th IEEE International Conference on Image Processing, pp. 41374140.
Chan, T. F., Golub, G. H. and Mulet, P. (1999), ‘A nonlinear primal–dual method for total variation-based image restoration’, SIAM J. Sci. Comput. 20, 19641977.
Chaux, C., Combettes, P. L., Pesquet, J.-C. and Wajs, V. R. (2007), ‘A variational formulation for frame-based inverse problems’, Inverse Problems 23, 1495.
Chavent, G. and Kunisch, K. (1997), ‘Regularization of linear least squares problems by total bounded variation’, ESAIM Control Optim. Calc. Var. 2, 359376.
Chen, Y. and Pock, T. (2017), ‘Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration’, IEEE Trans. Pattern Anal. Machine Intell. 39, 12561272.
Chen, Y., Pock, T. and Bischof, H. (2014a), Learning -based analysis and synthesis sparsity priors using bi-level optimization. arXiv:1401.4105
Chen, Y., Pock, T., Ranftl, R. and Bischof, H. (2013), Revisiting loss-specific training of filter-based MRFs for image restoration. In GCPR 2013: German Conference on Pattern Recognition, (Weickert, J. et al. , eds), Vol. 8142 of Lecture Notes in Computer Science, Springer, pp. 271281.
Chen, Y., Ranftl, R. and Pock, T. (2014b), ‘Insights into analysis operator learning: From patch-based sparse models to higher order MRFs’, IEEE Trans. Image Process. 23, 10601072.
Chen, Y., Yu, W. and Pock, T. (2015), On learning optimized reaction diffusion processes for effective image restoration. In CVPR 2015: IEEE Conference on Computer Vision and Pattern Recognition, pp. 52615269.
Christensen, O. (2003), An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Springer.
Chung, C. V., De los Reyes, J. C. and Schönlieb, C.-B. (2017), ‘Learning optimal spatially-dependent regularization parameters in total variation image denoising’, Inverse Problems 33, 074005.
Chung, J., Chung, M. and O’Leary, D. P. (2011), ‘Designing optimal spectral filters for inverse problems’, SIAM J. Sci. Comput. 33, 31323152.
Chung, J., Espanol, M. I. and Nguyen, T. (2014), Optimal regularization parameters for general-form Tikhonov regularization. arXiv:1407.1911
Colonna, F., Easley, G., Guo, K. and Labate, D. (2010), ‘Radon transform inversion using the shearlet representation’, Appl. Comput. Harmon. Anal. 29, 232250.
Colton, D. and Kress, R. (2012), Inverse Acoustic and Electromagnetic Scattering Theory, Vol. 93 of Applied Mathematical Sciences, Springer.
Colton, D. and Monk, P. (1988), ‘The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium’, Quart. J. Mech Appl. Math. 41, 97125.
Colton, D., Engl, H., Louis, A. K., Mclaughlin, J. and Rundell, W. (2012), Surveys on Solution Methods for Inverse Problems, Springer.
Colton, D., Ewing, R. E. and Rundell, W. et al. (1990), Inverse Problems in Partial Differential Equations, SIAM.
Cotter, S. F., Rao, B. D., Engan, K. and Kreutz-Delgado, K. (2005), ‘Sparse solutions to linear inverse problems with multiple measurement vectors’, IEEE Trans. Signal Process. 53, 24772488.
Darbon, J. and Osher, S. (2007), Fast discrete optimization for sparse approximations and deconvolutions. UCLA CAM Report preprint.
Dashti, M., Law, K. J. H., Stuart, A. M. and Voss, J. (2013), ‘MAP estimators and their consistency in Bayesian nonparametric inverse problems’, Inverse Problems 29, 095017.
De los Reyes, J. C. and Schönlieb, C.-B. (2013), ‘Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization’, Inverse Probl. Imaging 7, 11831214.
De los Reyes, J. C., Schönlieb, C.-B. and Valkonen, T. (2016), ‘The structure of optimal parameters for image restoration problems’, J. Math. Anal. Appl. 434, 464500.
De los Reyes, J. C., Schönlieb, C.-B. and Valkonen, T. (2017), ‘Bilevel parameter learning for higher-order total variation regularisation models’, J. Math. Imaging Vision 57, 125.
Defazio, A., Bach, F. and Lacoste-Julien, S. (2014), SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In NIPS 2014: Advances in Neural Information Processing Systems 27 (Ghahramani, Z. et al. , eds), Curran Associates, pp. 112.
Deledalle, C.-A., Papadakis, N. and Salmon, J. (2015), On debiasing restoration algorithms: Applications to total-variation and nonlocal-means. In SSVM 2015: Scale Space and Variational Methods in Computer Vision (Aujol, J.-F. et al. , eds), Springer, pp. 129141.
Deledalle, C.-A., Papadakis, N., Salmon, J. and Vaiter, S. (2017), ‘CLEAR: Covariant least-square refitting with applications to image restoration’, SIAM J. Imaging Sci. 10, 243284.
Denoyelle, Q., Duval, V. and Peyré, G. (2017), ‘Support recovery for sparse super-resolution of positive measures’, J. Fourier Anal. Appl. 23, 11531194.
Domke, J. (2012), Generic methods for optimization-based modeling. In Fifteenth International Conference on Artificial Intelligence and Statistics, (Lawrence, N. D. and Girolami, M., eds), PMLR, pp. 318326.
Donoho, D. L. (1992), ‘Superresolution via sparsity constraints’, SIAM J. Math. Anal. 23, 13091331.
Donoho, D. L. (2006), ‘Compressed sensing’, IEEE Trans. Inform. Theory 52, 12891306.
Donoho, D. L. and Johnstone, I. M. (1995), ‘Adapting to unknown smoothness via wavelet shrinkage’, J. Amer. Statist. Assoc. 90(432), 12001224.
Donoho, D. L., Elad, M. and Temlyakov, V. N. (2006), ‘Stable recovery of sparse overcomplete representations in the presence of noise’, IEEE Trans. Inform. Theory 52, 618.
Droske, M., Rumpf, M. and Schaller, C. (2003), Nonrigid morphological image registration & its practical issues. In ICIP 2003: IEEE International Conference on Image Processing, pp. II–699.
Drusvyatskiy, D., Ioffe, A. D. and Lewis, A. S. (2016), Nonsmooth optimization using Taylor-like models: Error bounds, convergence, and termination criteria. arXiv:1610.03446
Duarte, M. F., Sarvotham, S., Wakin, M. B., Baron, D. and Baraniuk, R. G. (2005), Joint sparsity models for distributed compressed sensing. In Proceedings of the Workshop on Signal Processing with Adaptive Sparse Structured Representations, IEEE.
Duval, V. and Peyré, G. (2017a), ‘Sparse regularization on thin grids, I: The Lasso’, Inverse Problems 33, 055008.
Duval, V. and Peyré, G. (2017b), ‘Sparse spikes deconvolution on thin grids, II: The continuous basis pursuit’, Inverse Problems 33, 095008.
Eckstein, J. (1993), ‘Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming’, Math. Oper. Res. 18, 202226.
Eggermont, P. P. B. (1993), ‘Maximum entropy regularization for Fredholm integral equations of the first kind’, SIAM J. Math. Anal. 24, 15571576.
Ehrhardt, M. J. and Arridge, S. R. (2014), ‘Vector-valued image processing by parallel level sets’, IEEE Trans. Image Process. 23, 918.
Ehrhardt, M. J. and Betcke, M. M. (2016), ‘Multicontrast MRI reconstruction with structure-guided total variation’, SIAM J. Imaging Sci. 9, 10841106.
Ehrhardt, M. J., Markiewicz, P., Liljeroth, M., Barnes, A., Kolehmainen, V., Duncan, J. S., Pizarro, L., Atkinson, D., Hutton, B. F. and Ourselin, S. (2016), ‘PET reconstruction with an anatomical MRI prior using parallel level sets’, IEEE Trans. Medical Imaging 35, 21892199.
Ehrhardt, M. J., Thielemans, K., Pizarro, L., Atkinson, D., Ourselin, S., Hutton, B. F. and Arridge, S. R. (2014), ‘Joint reconstruction of PET-MRI by exploiting structural similarity’, Inverse Problems 31, 015001.
Eicke, B. (1992), ‘Iteration methods for convexly constrained ill-posed problems in Hilbert space’, Numer. Funct. Anal. Optim. 13, 413429.
Ekeland, I. and Temam, R. (1999), Convex Analysis and Variational Problems, corrected reprint edition, SIAM.
Elad, M., Milanfar, P. and Rubinstein, R. (2007), ‘Analysis versus synthesis in signal priors’, Inverse Problems 23, 947.
Eldén, L. (1977), ‘Algorithms for the regularization of ill-conditioned least squares problems’, BIT Numer. Math. 17, 134145.
Engl, H. W. (1987a), ‘Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates’, J. Optim. Theory Appl. 52, 209215.
Engl, H. W. (1987b), ‘On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems’, J. Approx. Theory 49, 5563.
Engl, H. W. and Gfrerer, H. (1988), ‘ A posteriori parameter choice for general regularization methods for solving linear ill-posed problems’, Appl. Numer. Math. 4, 395417.
Engl, H. W. and Landl, G. (1993), ‘Convergence rates for maximum entropy regularization’, SIAM J. Numer. Anal. 30, 15091536.
Engl, H. W. and Neubauer, A. (1985), Optimal discrepancy principles for the Tikhonov regularization of integral equations of the first kind. In Constructive Methods for the Practical Treatment of Integral Equations (Hämmerlin, G. and Hoffmann, K.-H., eds), Springer, pp. 120141.
Engl, H. W. and Neubauer, A. (1987), Optimal parameter choice for ordinary and iterated Tikhonov regularization. In Inverse and Ill-Posed Problems (Engl, H. W. and Groetsch, C. W., eds), Elsevier, pp. 97125.
Engl, H. W., Hanke, M. and Neubauer, A. (1996), Regularization of Inverse Problems, Mathematics and Its Applications, Springer.
Engl, H. W., Kunisch, K. and Neubauer, A. (1989), ‘Convergence rates for Tikhonov regularisation of non-linear ill-posed problems’, Inverse Problems 5, 523.
Engl, H. W., Louis, A. K. & Rundell, W. (Eds) (2012), Inverse Problems in Medical Imaging and Nondestructive Testing, Springer.
Esser, E., Zhang, X. and Chan, T. F. (2010), ‘A general framework for a class of first order primal–dual algorithms for convex optimization in imaging science’, SIAM J. Imaging Sci. 3, 10151046.
Evans, L. and Gariepy, R. (1992), Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press.
Flemming, J. (2013), ‘Variational smoothness assumptions in convergence rate theory: An overview’, J. Inverse Ill-Posed Probl. 21, 395409.
Flemming, J. (2017a), A converse result for Banach space convergence rates in Tikhonov-type convex regularization of ill-posed linear equations. arXiv:1712.01499
Flemming, J. (2017b), ‘Existence of variational source conditions for nonlinear inverse problems in Banach spaces’, J. Inverse Ill-Posed Probl. doi:10.1515/jiip-2017-0092
Flemming, J. and Gerth, D. (2017), ‘Injectivity and weak*-to-weak continuity suffice for convergence rates in -regularization’, J. Inverse Ill-Posed Probl. 26, 8594.
Flemming, J. and Hofmann, B. (2010), ‘A new approach to source conditions in regularization with general residual term’, Numer. Funct. Anal. Optim. 31, 254284.
Flemming, J., Hofmann, B. and Veselić, I. (2015), ‘On -regularization in light of Nashed’s ill-posedness concept’, Comput. Methods Appl. Math. 15, 279289.
Flemming, J., Hofmann, B. and Veselić, I. (2016), ‘A unified approach to convergence rates for -regularization and lacking sparsity’, J. Inverse Ill-Posed Probl. 24, 139148.
Fornasier, M. and Rauhut, H. (2008), ‘Recovery algorithms for vector-valued data with joint sparsity constraints’, SIAM J. Numer. Anal. 46, 577613.
Gao, Y. and Bredies, K. (2017), Infimal convolution of oscillation total generalized variation for the recovery of images with structured texture. arXiv:1710.11591
Gatehouse, P. D., Keegan, J., Crowe, L. A., Masood, S., Mohiaddin, R. H., Kreitner, K.-F. and Firmin, D. N. (2005), ‘Applications of phase-contrast flow and velocity imaging in cardiovascular MRI’, European Radiology 15, 21722184.
Gfrerer, H. (1987), ‘An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates’, Math. Comp. 49(180), 507522.
Gholami, A. and Siahkoohi, H. (2010), ‘Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints’, Geophys. J. Internat. 180, 871882.
Gilboa, G. (2014a), Nonlinear band-pass filtering using the TV transform. In EUSIPCO 2014: 22nd European Signal Processing Conference, IEEE, pp. 16961700.
Gilboa, G. (2014b), ‘A total variation spectral framework for scale and texture analysis’, SIAM J. Imaging Sci. 7, 19371961.
Gilboa, G., Moeller, M. and Burger, M. (2016), ‘Nonlinear spectral analysis via one-homogeneous functionals: Overview and future prospects’, J. Math. Imaging Vision 56, 300319.
Giné, E. and Nickl, R. (2015), Mathematical Foundations of Infinite-Dimensional Statistical Models, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press.
Grah, J. S. (2017) Mathematical imaging tools in cancer research: From mitosis analysis to sparse regularisation. PhD thesis, University of Cambridge.
Grasmair, M. (2011), ‘Linear convergence rates for Tikhonov regularization with positively homogeneous functionals’, Inverse Problems 27, 075014.
Grasmair, M. (2013), ‘Variational inequalities and higher order convergence rates for Tikhonov regularisation on Banach spaces’, J. Inverse Ill-Posed Probl. 21, 379394.
Grasmair, M. and Lenzen, F. (2010), ‘Anisotropic total variation filtering’, Appl. Math. Optim. 62, 323339.
Grasmair, M., Scherzer, O. and Haltmeier, M. (2011), ‘Necessary and sufficient conditions for linear convergence of -regularization’, Commun. Pure Appl. Math. 64, 161182.
Groetsch, C. W. (1977), ‘Sequential regularization of ill-posed problems involving unbounded operators’, Comment. Math. Univ. Carolin. 18, 489498.
Groetsch, C. W. (1993), Inverse Problems in the Mathematical Sciences, Vieweg Mathematics for Scientists and Engineers, Vieweg.
Groetsch, C. W. and King, J. T. (1979), ‘Extrapolation and the method of regularization for generalized inverses’, J. Approx. Theory 25, 233247.
Guo, K. and Labate, D. (2007), ‘Optimally sparse multidimensional representation using shearlets’, SIAM J. Math. Anal. 39, 298318.
Haber, E. and Tenorio, L. (2003), ‘Learning regularization functionals: A supervised training approach’, Inverse Problems 19, 611.
Haber, E., Horesh, L. and Tenorio, L. (2009), ‘Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems’, Inverse Problems 26, 025002.
Hadamard, J. (1902), ‘Sur les problèmes aux dérivées partielles et leur signification physique’, Princeton University Bulletin 13, 4952.
Hadamard, J. (1923), Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press.
Hammernik, K., Klatzer, T., Kobler, E., Recht, M. P., Sodickson, D. K., Pock, T. and Knoll, F. (2017), ‘Learning a variational network for reconstruction of accelerated MRI data’, Magn. Reson. Med. 79, 30553071.
Hanke, M., Neubauer, A. and Scherzer, O. (1995), ‘A convergence analysis of the Landweber iteration for nonlinear ill-posed problems’, Numer. Math. 72, 2137.
Hansen, P. C. (1987), ‘The truncated SVD as a method for regularization’, BIT Numer. Math. 27, 534553.
Hansen, P. C. (1992), ‘Analysis of discrete ill-posed problems by means of the L-curve’, SIAM Review 34, 561580.
Hein, M. and Bühler, T. (2010), An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. In NIPS 2010: Advances in Neural Information Processing Systems 23 (Lafferty, J. D. et al. , eds), Curran Associates, pp. 847855.
Heins, P. (2014) Reconstruction using local sparsity: A novel regularization technique and an asymptotic analysis of spatial sparsity priors. PhD thesis, Westfälische Wilhelms-Universität Münster, Germany.
Heins, P., Moeller, M. and Burger, M. (2015), ‘Locally sparse reconstruction using the -norm’, Inverse Probl. Imaging 9, 10931137.
Helin, T. and Burger, M. (2015), ‘Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems’, Inverse Problems 31, 085009.
Helin, T. and Lassas, M. (2011), ‘Hierarchical models in statistical inverse problems and the Mumford–Shah functional’, Inverse Problems 27, 015008.
Hinterberger, W. and Scherzer, O. (2006), ‘Variational methods on the space of functions of bounded Hessian for convexification and denoising’, Computing 76, 109133.
Hinterberger, W., Scherzer, O., Schnörr, C. and Weickert, J. (2002), ‘Analysis of optical flow models in the framework of the calculus of variations’, Numer. Funct. Anal. Optim. 23, 6989.
Hintermüller, M. and Wu, T. (2015), ‘Bilevel optimization for calibrating point spread functions in blind deconvolution’, Inverse Probl. Imaging 9, 11391169.
Hintermüller, M., Holler, M. and Papafitsoros, K. (2017), A function space framework for structural total variation regularization with applications in inverse problems. arXiv:1710.01527
Hoerl, A. E. (1959), ‘Optimum solution of many variables equations’, Chem. Engrg Progr. 55, 6978.
Hoerl, A. E. and Kennard, R. W. (1970), ‘Ridge regression: Biased estimation for nonorthogonal problems’, Technometrics 12, 5567.
Hohage, T. (1997), ‘Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and an inverse scattering problem’, Inverse Problems 13, 1279.
Hohage, T. and Weidling, F. (2017), ‘Characterizations of variational source conditions, converse results, and maxisets of spectral regularization methods’, SIAM J. Numer. Anal. 55, 598620.
Hohage, T. and Werner, F. (2013), ‘Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data’, Numer. Math. 123, 745779.
Hohage, T. and Werner, F. (2016), ‘Inverse problems with Poisson data: Statistical regularization theory, applications and algorithms’, Inverse Problems 32, 093001.
Holland, D., Malioutov, D., Blake, A., Sederman, A. and Gladden, L. (2010), ‘Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing’, J. Magnetic Resonance 203, 236246.
Holland, D., Müller, C., Dennis, J., Gladden, L. and Sederman, A. (2008), ‘Spatially resolved measurement of anisotropic granular temperature in gas-fluidized beds’, Powder Technology 182, 171181.
Holler, M. and Kunisch, K. (2014), ‘On infimal convolution of TV-type functionals and applications to video and image reconstruction’, SIAM J. Imaging Sci. 7, 22582300.
Hu, Y. and Jacob, M. (2012), ‘Higher degree total variation (HDTV) regularization for image recovery’, IEEE Trans. Image Process. 21, 25592571.
Huang, J. and Mumford, D. (1999), Statistics of natural images and models. In CVPR 1999: IEEE Computer Society Conference On Computer Vision and Pattern Recognition, pp. 541547.
Isakov, V. (2006), Inverse Problems for Partial Differential Equations, Vol. 127 of Applied Mathematical Sciences, Springer.
Isakov, V. (2008), ‘On inverse problems in secondary oil recovery’, European J. Appl. Math. 19, 459478.
Ivanov, V. K. (1962), ‘On linear problems which are not well-posed’, Soviet Math. Dokl. 3, 981983.
Jalalzai, K. (2016), ‘Some remarks on the staircasing phenomenon in total variation-based image denoising’, J. Math. Imaging Vision 54, 256268.
John, F. (1960), ‘Continuous dependence on data for solutions of partial differential equations with a prescribed bound’, Commun. Pure Appl. Math. 13, 551585.
Johnson, R. and Zhang, T. (2013), Accelerating stochastic gradient descent using predictive variance reduction. In NIPS 2013: Advances in Neural Information Processing Systems 26 (Burges, C. J. C. et al. , eds), Curran Associates, pp. 315323.
Kaipio, J. P. and Somersalo, E. (2006), Statistical and Computational Inverse Problems, Applied Mathematical Sciences, Springer.
Kaipio, J. P., Kolehmainen, V., Vauhkonen, M. and Somersalo, E. (1999), ‘Inverse problems with structural prior information’, Inverse Problems 15, 713.
Kaltenbacher, B. (1997), ‘Some Newton-type methods for the regularization of nonlinear ill-posed problems’, Inverse Problems 13, 729.
Kaltenbacher, B. (2008), ‘A note on logarithmic convergence rates for nonlinear Tikhonov regularization’, J. Inverse Ill-Posed Probl. 16, 7988.
Kaltenbacher, B., Schöpfer, F. and Schuster, T. (2009), ‘Iterative methods for nonlinear ill-posed problems in Banach spaces: Convergence and applications to parameter identification problems’, Inverse Problems 25, 065003.
Kekkonen, H., Lassas, M. and Siltanen, S. (2014), ‘Analysis of regularized inversion of data corrupted by white Gaussian noise’, Inverse Problems 30, 045009.
Kekkonen, H., Lassas, M. and Siltanen, S. (2016), ‘Posterior consistency and convergence rates for Bayesian inversion with hypoelliptic operators’, Inverse Problems 32, 085005.
Kirisits, C. and Scherzer, O. (2017), ‘Convergence rates for regularization functionals with polyconvex integrands’, Inverse Problems 33, 085008.
Kiwiel, K. C. (1997), ‘Proximal minimization methods with generalized Bregman functions’, SIAM J. Control Optim. 35, 11421168.
Klann, E. and Ramlau, R. (2013), ‘Regularization properties of Mumford–Shah-type functionals with perimeter and norm constraints for linear ill-posed problems’, SIAM J. Imaging Sci. 6, 413436.
Klann, E., Ramlau, R. and Ring, W. (2011), ‘A Mumford–Shah level-set approach for the inversion and segmentation of SPECT/CT data’, Inverse Probl. Imaging 5, 137166.
Klatzer, T., Soukup, D., Kobler, E., Hammernik, K. and Pock, T. (2017), Trainable regularization for multi-frame superresolution. In GCPR 2017: German Conference on Pattern Recognition, (Roth, V. and Vetter, T., eds), Vol. 10496 of Lecture Notes in Computer Science, Springer, pp. 90100.
Knoll, F., Bredies, K., Pock, T. and Stollberger, R. (2011), ‘Second order total generalized variation (TGV) for MRI’, Magnetic Resonance Medicine 65, 480491.
Knoll, F., Holler, M., Koesters, T., Otazo, R., Bredies, K. and Sodickson, D. K. (2017), ‘Joint MR-PET reconstruction using a multi-channel image regularizer’, IEEE Trans. Medical Imaging 36, 116.
Kobler, E., Klatzer, T., Hammernik, K. and Pock, T. (2017), Variational networks: connecting variational methods and deep learning. In GCPR 2017: German Conference on Pattern Recognition, (Roth, V. and Vetter, T., eds), Vol. 10496 of Lecture Notes in Computer Science, Springer, pp. 281293.
Kolehmainen, V., Lassas, M., Niinimäki, K. and Siltanen, S. (2012), ‘Sparsity-promoting Bayesian inversion’, Inverse Problems 28, 025005.
Krause, M., Alles, R. M., Burgeth, B. and Weickert, J. (2016), ‘Fast retinal vessel analysis’, J. Real-Time Image Processing 11, 413422.
Kravaris, C. and Seinfeld, J. H. (1985), ‘Identification of parameters in distributed parameter systems by regularization’, SIAM J. Control Optim. 23, 217241.
Kryanev, A. (1974), ‘An iterative method for solving incorrectly posed problems’, USSR Comput. Math. Math. Phys. 14, 2435.
Kundur, D. and Hatzinakos, D. (1996), ‘Blind image deconvolution’, IEEE Signal Processing Magazine 13, 43.
Kunisch, K. and Hintermüller, M. (2004), ‘Total bounded variation regularization as a bilaterally constrained optimization problem’, SIAM J. Appl. Math. 64, 13111333.
Kunisch, K. and Pock, T. (2013), ‘A bilevel optimization approach for parameter learning in variational models’, SIAM J. Imaging Sci. 6, 938983.
Kurdyka, K. (1998), ‘On gradients of functions definable in o-minimal structures’, Annales de l’Institut Fourier (Chartres) 48, 769784.
Kutyniok, G. and Labate, D. (2012), Introduction to shearlets. In Shearlets: Multiscale Analysis for Multivariate Data, Applied and Numerical Harmonic Analysis, Springer, pp. 138.
Labate, D., Lim, W.-Q., Kutyniok, G. and Weiss, G. (2005), Sparse multidimensional representation using shearlets. In Optics and Photonics 2005, Proceedings Vol. 5914, SPIE, 59140U.
Landweber, L. (1951), ‘An iteration formula for Fredholm integral equations of the first kind’, Amer. J. Math. 73, 615624.
Lassas, M., Saksman, E. and Siltanen, S. (2009), ‘Discretization-invariant Bayesian inversion and Besov space priors’, Inverse Probl. Imaging 3, 87122.
Lattès, R. and Lions, J.-L. (1967), ‘Méthode de quasi-réversibilité et applications’.
Laurent, T., von Brecht, J., Bresson, X. and Szlam, A. (2016), The product cut. In NIPS 2016: Advances in Neural Information Processing Systems 29 (Lee, D. D. et al. , eds), Curran Associates, pp. 37923800.
LeCun, Y., Bengio, Y. and Hinton, G. (2015), ‘Deep learning’, Nature 521(7553), 436444.
Lederer, J. (2013), Trust, but verify: Benefits and pitfalls of least-squares refitting in high dimensions. arXiv:1306.0113
Lee, O., Kim, J. M., Bresler, Y. and Ye, J. C. (2011), ‘Compressive diffuse optical tomography: Noniterative exact reconstruction using joint sparsity’, IEEE Trans. Medical Imaging 30, 11291142.
Lenzen, F., Becker, F. and Lellmann, J. (2013), Adaptive second-order total variation: An approach aware of slope discontinuities. In SSVM 2015: Scale Space and Variational Methods in Computer Vision (Aujol, J.-F. et al. , eds), Springer, pp. 6173.
Levenberg, K. (1944), ‘A method for the solution of certain non-linear problems in least squares’, Quart. Appl. Math. 2, 164168.
Li, G. and Pong, T. K. (2015), ‘Global convergence of splitting methods for nonconvex composite optimization’, SIAM J. Optim. 25, 24342460.
Lie, H. C. and Sullivan, T. (2017), Equivalence of weak and strong modes of measures on topological vector spaces. arXiv:1708.02516
Lions, P.-L. and Mercier, B. (1979), ‘Splitting algorithms for the sum of two nonlinear operators’, SIAM J. Numer. Anal. 16, 964979.
Lojasiewicz, S. (1963), ‘Une propriété topologique des sous-ensembles analytiques réels’, Les Équations aux Dérivées Partielles 117, 8789.
Louis, A. (1996), ‘Approximate inverse for linear and some nonlinear problems’, Inverse Problems 12, 175.
Lustig, M., Donoho, D. and Pauly, J. M. (2007), ‘Sparse MRI: The application of compressed sensing for rapid MR imaging’, Magnetic Resonance Medicine 58, 11821195.
Mallat, S. (2008), A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press.
Mallat, S. and Zhang, Z. (1993), ‘Matching pursuits with time-frequency dictionaries’, IEEE Trans. Signal Process. 12, 33973415.
Marquardt, D. W. (1963), ‘An algorithm for least-squares estimation of nonlinear parameters’, J. Soc. Indust. Appl. Math. 11, 431441.
Marquina, A. and Osher, S. J. (2008), ‘Image super-resolution by TV-regularization and Bregman iteration’, J. Sci. Comput. 37, 367382.
Modersitzki, J. (2004), Numerical Methods for Image Registration, Numerical Mathematics and Scientific Computation, Oxford University Press.
Moeller, M. (2012), Multiscale methods for polyhedral regularizations and applications in high dimensional imaging. PhD thesis, University of Münster, Germany.
Moeller, M. and Burger, M. (2013), ‘Multiscale methods for polyhedral regularizations’, SIAM J. Optim. 23, 14241456.
Moeller, M., Benning, M., Schönlieb, C. and Cremers, D. (2015), ‘Variational depth from focus reconstruction’, IEEE Trans. Image Process. 24, 53695378.
Moeller, M., Brinkmann, E., Burger, M. and Seybold, T. (2014), ‘Color Bregman TV’, SIAM J. Imaging Sci. 7, 27712806.
Moeller, M., Wittman, T., Bertozzi, A. and Burger, M. (2012), ‘A variational approach for sharpening high dimensional images’, SIAM J. Imaging Sci. 5, 150178.
Morozov, V. A. (1966), ‘Regularization of incorrectly posed problems and the choice of regularization parameter’, USSR Comput. Math. Math. Phys. 6, 242251.
Müller, J. (2013), Advanced image reconstruction and denoising: Bregmanized (higher order) total variation and application in PET. PhD thesis, Westfälische Wilhelms-Universität Münster, Germany.
Müller, J., Brune, C., Sawatzky, A., Kösters, T., Schäfers, K. P. and Burger, M. (2011), Reconstruction of short time PET scans using Bregman iterations. In NSS/MIC 2011: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 23832385.
Mumford, D. and Shah, J. (1989), ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure Appl. Math. 42, 577685.
Nair, V. and Hinton, G. E. (2010), Rectified linear units improve restricted Boltzmann machines. In ICML’10: 27th International Conference on Machine Learning, pp. 807814.
Nashed, M. Z. and Wahba, G. (1974a), ‘Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind’, Math. Comp. 28(125), 6980.
Nashed, M. Z. and Wahba, G. (1974b), ‘Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations’, SIAM J. Math. Anal. 5, 974987.
Nashed, M. Z. and Wahba, G. (1974c), ‘Regularization and approximation of linear operator equations in reproducing kernel spaces’, Bull. Amer. Math. Soc. 80, 12131218.
Natterer, F. (1984), ‘Error bounds for Tikhonov regularization in Hilbert scales’, Appl. Anal. 18, 2937.
Natterer, F. (2001), The Mathematics of Computerized Tomography, SIAM Monographs on Mathematical Modeling and Computation, SIAM.
Natterer, F. and Wübbeling, F. (2001), Mathematical Methods in Image Reconstruction, SIAM.
Nemirovskii, A. and Yudin, D. B. (1983), Problem Complexity and Method Efficiency in Optimization, Wiley-Interscience Series in Discrete Mathematics, Wiley.
Neubauer, A. (1988a), ‘An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates’, SIAM J. Numer. Anal. 25, 13131326.
Neubauer, A. (1988b), ‘Tikhonov-regularization of ill-posed linear operator equations on closed convex sets’, J. Approx. Theory 53, 304320.
Neubauer, A. and Pikkarainen, H. K. (2008), ‘Convergence results for the Bayesian inversion theory’, J. Inverse Ill-Posed Probl. 16, 601613.
Nickl, R. and Söhl, J. et al. (2017), ‘Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions’, Ann. Statist. 45, 16641693.
Nikolova, M. and Tan, P. (2017), Alternating proximal gradient descent for nonconvex regularised problems with multiconvex coupling terms. arXiv:hal-01492846v2
Ochs, P., Chen, Y., Brox, T. and Pock, T. (2014), ‘iPiano: Inertial proximal algorithm for nonconvex optimization’, SIAM J. Imaging Sci. 7, 13881419.
Ochs, P., Fadili, J. and Brox, T. (2017) Non-smooth non-convex Bregman minimization: Unification and new algorithms. arXiv:1707.02278
Ochs, P., Ranftl, R., Brox, T. and Pock, T. (2015), Bilevel optimization with nonsmooth lower level problems. In SSVM 2015: Scale Space and Variational Methods in Computer Vision (Aujol, J.-F. et al. , eds), Springer, pp. 654665.
Osher, S., Burger, M., Goldfarb, D., Xu, J. and Yin, W. (2005), ‘An iterative regularization method for total variation-based image restoration’, Multiscale Model. Simul. 4, 460489.
Otazo, R., Candès, E. and Sodickson, D. K. (2015), ‘Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components’, Magnetic Resonance Medicine 73, 11251136.
Papafitsoros, K. and Schönlieb, C.-B. (2014), ‘A combined first and second order variational approach for image reconstruction’, J. Math. Imaging Vision 48, 308338.
Parikh, N. and Boyd, S. (2014), ‘Proximal algorithms’, Found. Trends Optim. 1, 127239.
Payne, L. E. (1975), Improperly Posed Problems in Partial Differential Equations, Vol. 22 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.
Phillips, D. L. (1962), ‘A technique for the numerical solution of certain integral equations of the first kind’, J. Assoc. Comput. Mach. 9, 8497.
Pock, T. and Sabach, S. (2016), ‘Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems’, SIAM J. Imaging Sci. 9, 17561787.
Pock, T., Cremers, D., Bischof, H. and Chambolle, A. (2009), An algorithm for minimizing the Mumford–Shah functional. In ICCV 2009: IEEE 12th International Conference on Computer Vision, pp. 11331140.
Prato, M., Bonettini, S., Loris, I., Porta, F. and Rebegoldi, S. (2016), ‘On the constrained minimization of smooth Kurdyka–Łojasiewicz functions with the scaled gradient projection method’, J. Phys. Conf. Ser. 756, 012001.
Ranftl, R., Pock, T. and Bischof, H. (2013), Minimizing TGV-based variational models with non-convex data terms. In SSVM 2013: Scale Space and Variational Methods in Computer Vision (Kuijper, A. et al. , eds), Springer, pp. 282293.
Rasch, J., Brinkmann, E.-M. and Burger, M. (2018), ‘Joint reconstruction via coupled Bregman iterations with applications to PET-MR imaging’, Inverse Problems 34, 014001.
Rasch, J., Kolehmainen, V., Nivajärvi, R., Kettunen, M., Gröhn, O., Burger, M. and Brinkmann, E.-M. (2017), Dynamic MRI reconstruction from undersampled data with an anatomical prescan. arXiv:1712.00099
Raus, T. (1984), ‘Residue principle for ill-posed problems’, Acta et Comment. Univ. Tartuensis 672, 1626.
Raus, T. (1992), ‘About regularization parameter choice in case of approximately given error bounds of data’, Acta et Comment. Univ. Tartuensis 937, 7789.
Reader, A. J., Matthews, J., Sureau, F. C., Comtat, C., Trébossen, R. and Buvat, I. (2007), Fully 4D image reconstruction by estimation of an input function and spectral coefficients. In IEEE Nuclear Science Symposium Conference, pp. 32603267.
Recht, B., Fazel, M. and Parrilo, P. A. (2010), ‘Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization’, SIAM Review 52, 471501.
Reed, M. and Simon, B. (1978), Methods of Mathematical Physics IV: Analysis of Operators, Elsevier.
Resmerita, E. (2005), ‘Regularization of ill-posed problems in Banach spaces: Convergence rates’, Inverse Problems 21, 1303.
Resmerita, E. and Scherzer, O. (2006), ‘Error estimates for non-quadratic regularization and the relation to enhancement’, Inverse Problems 22, 801.
Ring, W. (2000), ‘Structural properties of solutions to total variation regularization problems’, ESAIM Math. Model. Numer. Anal. 34, 799810.
Rockafellar, R. (1972), Convex Analysis, Princeton Mathematical Series, Princeton University Press.
Romano, Y., Elad, M. and Milanfar, P. (2017), ‘The little engine that could: Regularization by denoising (RED)’, SIAM J. Imaging Sci. 10, 18041844.
Rondi, L. (2008), ‘Reconstruction in the inverse crack problem by variational methods’, European J. Appl. Math. 19, 635660.
Roth, S. and Black, M. J. (2005), Fields of experts: A framework for learning image priors. In CVPR 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 860867.
Rudin, L., Lions, P.-L. and Osher, S. (2003), Multiplicative denoising and deblurring: Theory and algorithms. In Geometric Level Set Methods in Imaging, Vision, and Graphics (Osher, S. and Paragios, N., eds), Springer, pp. 103119.
Rudin, L., Osher, S. and Fatemi, E. (1992), ‘Nonlinear total variation based noise removal algorithms’, Phys. D: Nonlinear Phenomena 60, 259268.
Rudin, W. (2006), Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill.
Sawatzky, A., Brune, C., Kösters, T., Wübbeling, F. and Burger, M. (2013), EM-TV methods for inverse problems with Poisson noise. In Level Set and PDE Based Reconstruction Methods in Imaging, (Burger, M. and Osher, S., eds), Vol 2090 of Lecture Notes in Mathematics, Springer, pp. 71142.
Scherzer, O. (1993), ‘Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill-posed problems’, Numer. Math. 66, 259279.
Scherzer, O. (1998), ‘Denoising with higher order derivatives of bounded variation and an application to parameter estimation’, Computing 60, 127.
Schmidt, M. F., Benning, M. and Schönlieb, C.-B. (2018), ‘Inverse scale space decomposition’, Inverse Problems 34, 045008.
Schmidt, U. and Roth, S. (2014), Shrinkage fields for effective image restoration. In CVPR 2014: IEEE Conference on Computer Vision and Pattern Recognition, pp. 27742781.
Schock, E. (1985), Approximate solution of ill-posed equations: Arbitrarily slow convergence vs. superconvergence. In Constructive Methods for the Practical Treatment of Integral Equations, (Hämmerlin, G. and Hoffmann, K. H., eds), Vol. 73 of International Series of Numerical Mathematics, Springer, pp. 234243.
Schöpfer, F., Louis, A. K. and Schuster, T. (2006), ‘Nonlinear iterative methods for linear ill-posed problems in Banach spaces’, Inverse Problems 22, 311.
Schuster, T., Kaltenbacher, B., Hofmann, B. and Kazimierski, K. (2012), Regularization Methods in Banach Spaces, De Gruyter.
Sederman, A., Johns, M., Alexander, P. and Gladden, L. (1998), ‘Structure-flow correlations in packed beds’, Chem. Engrg Sci. 53, 21172128.
Seidman, T. I. and Vogel, C. R. (1989), ‘Well posedness and convergence of some regularisation methods for non-linear ill posed problems’, Inverse Problems 5, 227.
Setzer, S., Steidl, G. and Teuber, T. (2011), ‘Infimal convolution regularizations with discrete -type functionals’, Comm. Math. Sci 9, 797872.
Starck, J.-L., Murtagh, F. and Fadili, J. M. (2010), Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity, Cambridge University Press.
Strong, D. and Chan, T. (2003), ‘Edge-preserving and scale-dependent properties of total variation regularization’, Inverse Problems 19, S165.
Strong, D. and Chan, T. et al. (1996), Exact solutions to total variation regularization problems. CAM Report 96-41, UCLA.
Stuart, A. M. (2010), Inverse problems: A Bayesian perspective. In Acta Numerica, Vol. 19, Cambridge University Press, pp. 451559.
Stück, R., Burger, M. and Hohage, T. (2011), ‘The iteratively regularized Gauss–Newton method with convex constraints and applications in 4Pi microscopy’, Inverse Problems 28, 015012.
Tappen, M. F. (2007), Utilizing variational optimization to learn Markov random fields. In CVPR 2007: IEEE Conference on Computer Vision and Pattern Recognition, pp. 18.
Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM.
Tarantola, A. and Valette, B. (1982), ‘Inverse problems = quest for information’, J. Geophys. 50, 150170.
Tayler, A. B., Holland, D. J., Sederman, A. J. and Gladden, L. F. (2012), ‘Exploring the origins of turbulence in multiphase flow using compressed sensing MRI’, Phys. Rev. Lett. 108, 264505.
Teboulle, M. (1992), ‘Entropic proximal mappings with applications to nonlinear programming’, Math. Oper. Res. 17, 670690.
Teschke, G. and Ramlau, R. (2007), ‘An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector-valued regimes and an application to color image inpainting’, Inverse Problems 23, 1851.
Thomas King, J. and Chillingworth, D. (1979), ‘Approximation of generalized inverses by iterated regularization’, Numer. Funct. Anal. Optim. 1, 499513.
Thompson, A. M., Brown, J. C., Kay, J. W. and Titterington, D. M. (1991), ‘A study of methods of choosing the smoothing parameter in image restoration by regularization’, IEEE Trans. Pattern Anal. Machine Intell. 13, 326339.
Tikhonov, A. N. (1943), ‘On the stability of inverse problems’, Dokl. Akad. Nauk SSSR 39, 195198.
Tikhonov, A. N. (1963), ‘Solution of incorrectly formulated problems and the regularization method’, Soviet Meth. Dokl. 4, 10351038.
Tikhonov, A. N. (1966), ‘On the stability of the functional optimization problem’, USSR Comput. Math. Math. Phys. 6, 2833.
Tikhonov, A. N. and Arsenin, V. Y. (1977), Solutions of Ill-Posed Problems, Winston & Sons.
Tikhonov, A. N., Goncharsky, A. and Bloch, M. (1987), Ill-Posed Problems in the Natural Sciences, Mir.
Vaiter, S., Deledalle, C.-A., Peyré, G., Dossal, C. and Fadili, J. (2013a), ‘Local behavior of sparse analysis regularization: Applications to risk estimation’, Appl. Comput. Harmon. Anal. 35, 433451.
Vaiter, S., Peyré, G., Dossal, C. and Fadili, J. (2013b), ‘Robust sparse analysis regularization’, IEEE Trans. Inform. Theory 59, 20012016.
Valkonen, T. (2014), ‘A primal–dual hybrid gradient method for nonlinear operators with applications to MRI’, Inverse Problems 30, 055012.
Vogel, C. (2002), Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, SIAM.
Wahba, G. (1977), ‘Practical approximate solutions to linear operator equations when the data are noisy’, SIAM J. Numer. Anal. 14, 651667.
Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. (2004), ‘Image quality assessment: From error visibility to structural similarity’, IEEE Trans. Image Process. 13, 600612.
Xu, Y. and Yin, W. (2013), ‘A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion’, SIAM J. Imaging Sci. 6, 17581789.
Xu, Y. and Yin, W. (2017), ‘A globally convergent algorithm for nonconvex optimization based on block coordinate update’, J. Sci. Comput. 72, 700734.
Yang, Y., Ma, J. and Osher, S. (2013), ‘Seismic data reconstruction via matrix completion’, Inverse Probl. Imaging 7, 13791392.
Yin, W. (2010), ‘Analysis and generalizations of the linearized Bregman method’, SIAM J. Imaging Sci. 3, 856877.
Yin, W., Osher, S., Goldfarb, D. and Darbon, J. (2008), ‘Bregman iterative algorithms for -minimization with applications to compressed sensing’, SIAM J. Imaging Sci. 1, 143168.
Zach, C., Pock, T. and Bischof, H. (2007), A duality based approach for realtime TV-L 1 optical flow, Pattern Recognition: 29th DAGM Symposium, (Hamprecht, F. A. et al. , eds), Vol. 4713 of Lecture Notes in Computer Science, Springer, pp. 214223.
Zeune, L., van Dalum, G., Terstappen, L. W., van Gils, S. A. and Brune, C. (2017), ‘Multiscale segmentation via Bregman distances and nonlinear spectral analysis’, SIAM J. Imaging Sci. 10, 111146.
Zhao, F., Noll, D. C., Nielsen, J.-F. and Fessler, J. A. (2012), ‘Separate magnitude and phase regularization via compressed sensing’, IEEE Trans. Medical Imaging 31, 17131723.
Zhu, M. and Chan, T. (2008), An efficient primal–dual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34, UCLA.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed