Skip to main content
×
Home
    • Aa
    • Aa

Numerical analysis of strongly nonlinear PDEs *

  • Michael Neilan (a1), Abner J. Salgado (a2) and Wujun Zhang (a3)
Abstract

We review the construction and analysis of numerical methods for strongly nonlinear PDEs, with an emphasis on convex and non-convex fully nonlinear equations and the convergence to viscosity solutions. We begin by describing a fundamental result in this area which states that stable, consistent and monotone schemes converge as the discretization parameter tends to zero. We review methodologies to construct finite difference, finite element and semi-Lagrangian schemes that satisfy these criteria, and, in addition, discuss some rather novel tools that have paved the way to derive rates of convergence within this framework.

Copyright
References
Hide All
Alla A., Falcone M. and Kalise D. (2015), ‘An efficient policy iteration algorithm for dynamic programming equations’, SIAM J. Sci. Comput. 37, A181A200.
Awanou G. (2015a), ‘Pseudo transient continuation and time marching methods for Monge–Ampère type equations’, Adv. Comput. Math. 41, 907935.
Awanou G. (2015b), ‘Quadratic mixed finite element approximations of the Monge–Ampère equation in 2D’, Calcolo 52, 503518.
Awanou G. (2015c), ‘Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equations: Classical solutions’, IMA J. Numer. Anal. 35, 11501166.
Baiocchi C. (1977), Estimations d’erreur dans L pour les inéquations à obstacle. In Mathematical Aspects of Finite Element Methods: Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.) Rome, 1975, Vol. 606 of Lecture Notes in Mathematics , Springer, pp. 2734.
Barles G. and Jakobsen E. (2005), ‘Error bounds for monotone approximation schemes for Hamilton–Jacobi–Bellman equations’, SIAM J. Numer. Anal. 43, 540558.
Barles G. and Jakobsen E. (2002), ‘On the convergence rate of approximation schemes for Hamilton–Jacobi–Bellman equations’, M2AN Math. Model. Numer. Anal. 36, 3354.
Barles G. and Souganidis P. (1991), ‘Convergence of approximation schemes for fully nonlinear second order equations’, Asymptotic Anal. 4, 271283.
Bellman R. (2010), Dynamic Programming, Princeton Landmarks in Mathematics, Princeton University Press. Reprint of the 1957 edition.
Benamou J.-D. and Brenier Y. (1998), ‘Weak existence for the semigeostrophic equations formulated as a coupled Monge–Ampère/transport problem’, SIAM J. Appl. Math. 58, 14501461.
Benamou J.-D. and Brenier Y. (2000), ‘A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem’, Numer. Math. 84, 375393.
Benamou J.-D., Collino F. and Mirebeau J.-M. (2016), ‘Monotone and consistent discretization of the Monge–Ampère operator’, Math. Comp. 85(302), 27432775.
Benamou J.-D., Froese B. and Oberman A. (2014), ‘Numerical solution of the optimal transportation problem using the Monge–Ampère equation’, J. Comput. Phys. 260, 107126.
Bensoussan A. and Lions J.-L. (1984), Impulse Control and Quasivariational Inequalities. (translated from the French by J. M. Cole) Gauthier-Villars.
Böhmer K. (2008), ‘On finite element methods for fully nonlinear elliptic equations of second order’, SIAM J. Numer. Anal. 46, 12121249.
Bokanowski O., Maroso S. and Zidani H. (2009), ‘Some convergence results for Howard’s algorithm’, SIAM J. Numer. Anal. 47, 30013026.
Boulbrachene M. and Cortey-Dumont P. (2009), ‘Optimal inline-graphic $L^{\infty }$ -error estimate of a finite element method for Hamilton–Jacobi–Bellman equations’, Numer. Funct. Anal. Optim. 30, 421435.
Boulbrachene M. and Haiour M. (2001), ‘The finite element approximation of Hamilton–Jacobi–Bellman equations’, Comput. Math. Appl. 41, 9931007.
Brenner S. and Neilan M. (2012), ‘Finite element approximations of the three dimensional Monge–Ampère equation’, ESAIM Math. Model. Numer. Anal. 46, 9791001.
Brenner S. and Scott L. (2008), The Mathematical Theory of Finite Element Methods, third edition, Vol. 15 of Texts in Applied Mathematics , Springer.
Brenner S., Gudi T., Neilan M. and Sung L.-Y. (2011), ‘ inline-graphic $C^{0}$ penalty methods for the fully nonlinear Monge–Ampère equation’, Math. Comp. 80(276), 19791995.
Caffarelli L. and Cabré X. (1995), Fully Nonlinear Elliptic Equations, Vol. 43 of American Mathematical Society Colloquium Publications , AMS.
Caffarelli L. and Silvestre L. (2010a), ‘On the Evans–Krylov theorem’, Proc. Amer. Math. Soc. 138, 263265.
Caffarelli L. and Silvestre L. (2010b), Smooth approximations of solutions to nonconvex fully nonlinear elliptic equations. In Nonlinear Partial Differential Equations and Related Topics, Vol. 229 of American Mathematical Society Translations, Series 2, AMS, pp. 6785.
Caffarelli L. and Souganidis P. (2008), ‘A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs’, Comm. Pure Appl. Math. 61, 117.
Calderón A. and Zygmund A. (1952), ‘On the existence of certain singular integrals’, Acta Math. 88, 85139.
Carnicer J. and Dahmen W. (1994), ‘Characterization of local strict convexity preserving interpolation methods by inline-graphic $C^{1}$ functions’, J. Approx. Theory 77, 230.
Ciarlet P. (2002), The Finite Element Method for Elliptic Problems, Vol. 40 of Classics in Applied Mathematics , SIAM. Reprint of the 1978 original.
Cortey-Dumont P. (1987), ‘Sur l’analyse numérique des équations de Hamilton–Jacobi–Bellman’, Math. Methods Appl. Sci. 9, 198209.
Crandall M. and Lions P.-L. (1983), ‘Viscosity solutions of Hamilton–Jacobi equations’, Trans. Amer. Math. Soc. 277, 142.
Crandall M., Ishii H. and Lions P.-L. (1992), ‘User’s guide to viscosity solutions of second order partial differential equations’, Bull. Amer. Math. Soc. (N.S.) 27, 167.
Dacorogna B. (2008), Direct Methods in the Calculus of Variations, second edition, Vol. 78 of Applied Mathematical Sciences , Springer.
Dean E. and Glowinski R. (2006a), ‘An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in two dimensions’, Electron. Trans. Numer. Anal. 22, 7196.
Dean E. and Glowinski R. (2006b), ‘Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type’, Comput. Methods Appl. Mech. Engrg 195, 13441386.
Debrabant K. and Jakobsen E. (2013), ‘Semi-Lagrangian schemes for linear and fully non-linear diffusion equations’, Math. Comp. 82(283), 14331462.
Dong H. and Krylov N. (2007), ‘The rate of convergence of finite-difference approximations for parabolic Bellman equations with Lipschitz coefficients in cylindrical domains’, Appl. Math. Optim. 56, 3766.
Ekeland I. and Témam R. (1999), Convex Analysis and Variational Problems, Vol. 28 of Classics in Applied Mathematics , English edition, SIAM.
Ern A. and Guermond J.-L. (2004), Theory and Practice of Finite Elements, Vol. 159 of Applied Mathematical Sciences , Springer.
Evans L. (1980), ‘On solving certain nonlinear partial differential equations by accretive operator methods’, Israel J. Math. 36, 225247.
Evans L. (2010), Partial Differential Equations, second edition, Vol. 19 of Graduate Studies in Mathematics , AMS.
Evans L. and Friedman A. (1979), ‘Optimal stochastic switching and the Dirichlet problem for the Bellman equation’, Trans. Amer. Math. Soc. 253, 365389.
Feng X. and Jensen M. (2017), ‘Convergent semi-Lagrangian methods for the Monge–Ampère equation on unstructured grids’, SIAM J. Numer. Anal., to appear.
Feng X. and Lewis T. (2014), ‘Local discontinuous Galerkin methods for one-dimensional second order fully nonlinear elliptic and parabolic equations’, J. Sci. Comput. 59, 129157.
Feng X. and Neilan M. (2009), ‘Mixed finite element methods for the fully nonlinear Monge–Ampère equation based on the vanishing moment method’, SIAM J. Numer. Anal. 47, 12261250.
Feng X. and Neilan M. (2011), ‘Analysis of Galerkin methods for the fully nonlinear Monge–Ampère equation’, J. Sci. Comput. 47, 303327.
Feng X., Glowinski R. and Neilan M. (2013), ‘Recent developments in numerical methods for fully nonlinear second order partial differential equations’, SIAM Rev. 55, 205267.
Feng X., Hennings L. and Neilan M. (2017), ‘ inline-graphic $C^{0}$ discontinuous Galerkin finite element methods for second order linear elliptic partial differential equations in non-divergence form’, Math. Comp., to appear.
Feng X., Neilan M. and Schnake S. (2016), Interior penalty discontinuous Galerkin methods for second order linear non-divergence form elliptic PDEs. arXiv:1605.04364
Fleming W. and Soner H. (2006), Controlled Markov Processes and Viscosity Solutions, second edition, Vol. 25 of Stochastic Modelling and Applied Probability , Springer.
Fleming W. and Souganidis P. (1989), ‘On the existence of value functions of two-player, zero-sum stochastic differential games’, Indiana Univ. Math. J. 38, 293314.
Froese B. (2016), Convergent approximation of surfaces of prescribed Gaussian curvature with weak Dirichlet conditions. arXiv:1601.06315
Froese B. and Oberman A. (2011), ‘Convergent finite difference solvers for viscosity solutions of the elliptic Monge–Ampère equation in dimensions two and higher’, SIAM J. Numer. Anal. 49, 16921714.
Gallistl D. (2017), ‘Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefficients’, SIAM J. Numer. Anal., to appear.
Georgoulis E., Houston P. and Virtanen J. (2011), ‘An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems’, IMA J. Numer. Anal. 31, 281298.
Gerschgorin S. (1930), ‘Fehlerabschätzung für das Differenzenverfahren zur Lösung partieller Differentialgleichungen’, Z. Angew. Math. Mech. 10, 373382.
Gilbarg D. and Trudinger N. (2001), Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer. Reprint of the 1998 edition.
González R. and Tidball M. (1992), Fast solution of general nonlinear fixed point problems. In System Modelling and Optimization (Zurich, 1991), Vol. 180 of Lecture Notes in Control and Information Sciences , Springer, pp. 3544.
Grisvard P. (2011), Elliptic Problems in Nonsmooth Domains, Vol. 69 of Classics in Applied Mathematics , SIAM. Reprint of the 1985 original.
Gutiérrez C. (2001), The Monge–Ampère Equation, Vol. 44 of Progress in Nonlinear Differential Equations and their Applications , Birkhä user.
Han D. and Wan J. (2013), ‘Multigrid methods for second order Hamilton–Jacobi–Bellman and Hamilton–Jacobi–Bellman–Isaacs equations’, SIAM J. Sci. Comput. 35, S323S344.
Han Q. and Lin F. (2011), second edition, Vol. 1 of Courant Lecture Notes in Mathematics , AMS.
Hintermüller M., Ito K. and Kunisch K. (2002), ‘The primal–dual active set strategy as a semismooth Newton method’, SIAM J. Optim. 13, 865888.
Holden H. and Risebro N. (2015), Front Tracking for Hyperbolic Conservation Laws, second edition, Vol. 152 of Applied Mathematical Sciences , Springer.
Hoppe R. (1986), ‘Multigrid methods for Hamilton–Jacobi–Bellman equations’, Numer. Math. 49, 239254.
Iserles A. (2009), A First Course in the Numerical Analysis of Differential Equations, second edition, Cambridge Texts in Applied Mathematics, Cambridge University Press.
Ishii H. (1995), ‘On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions’, Funkcial. Ekvac. 38, 101120.
Jakobsen E. (2004), ‘On error bounds for approximation schemes for non-convex degenerate elliptic equations’, BIT 44, 269285.
Jakobsen E. (2006), ‘On error bounds for monotone approximation schemes for multi-dimensional Isaacs equations’, Asymptot. Anal. 49, 249273.
Jensen M. and Smears I. (2013a), Finite element methods with artificial diffusion for Hamilton–Jacobi–Bellman equations. In Numerical Mathematics and Advanced Applications 2011 (Cangiani A. et al. , ed.), Springer, pp. 267274.
Jensen M. and Smears I. (2013b), ‘On the convergence of finite element methods for Hamilton–Jacobi–Bellman equations’, SIAM J. Numer. Anal. 51, 137162.
Katsoulakis M. (1995), ‘A representation formula and regularizing properties for viscosity solutions of second-order fully nonlinear degenerate parabolic equations’, Nonlinear Anal. 24, 147158.
Katzourakis N. (2015), An Introduction to Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L , Springer Briefs in Mathematics, Springer.
Kawohl B. and Kutev N. (2007), ‘Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations’, Comm. Partial Diff. Equations 32, 12091224.
Kocan M. (1995), ‘Approximation of viscosity solutions of elliptic partial differential equations on minimal grids’, Numer. Math. 72, 7392.
Koike S. (2004), A Beginner’s Guide to the Theory of Viscosity Solutions, Vol. 13 of MSJ Memoirs , Mathematical Society of Japan.
Koike S. and Świech A. (2013), ‘Representation formulas for solutions of Isaacs integro-PDE’, Indiana Univ. Math. J. 62, 14731502.
Kossaczký I., Ehrhardt M. and Günther M. (2016), ‘On the non-existence of higher order monotone approximation schemes for HJB equations’, Appl. Math. Lett. 52, 5357.
Krylov N. (1987), Nonlinear Elliptic and Parabolic Equations of the Second Order (translated from the Russian by P. L. Buzytsky), Vol. 7 of Mathematics and its Applications (Soviet Series) , Reidel.
Krylov N. (1996), Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Vol. 12 of Graduate Studies in Mathematics , AMS.
Krylov N. (1997), ‘On the rate of convergence of finite-difference approximations for Bellman’s equations’, Algebra i Analiz 9, 245256.
Krylov N. (2000), ‘On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients’, Probab. Theory Rel. Fields 117, 116.
Krylov N. (2005), ‘The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients’, Appl. Math. Optim. 52, 365399.
Krylov N. (2008), Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Vol. 96 of Graduate Studies in Mathematics , AMS.
Krylov N. (2014), ‘On the rate of convergence of difference approximations for uniformly nondegenerate elliptic Bellman’s equations’, Appl. Math. Optim. 69, 431458.
Krylov N. (2015), ‘On the rate of convergence of finite-difference approximations for elliptic Isaacs equations in smooth domains’, Comm. Partial Diff. Equations 40, 13931407.
Kuo H.-J. and Trudinger N. (1990), ‘Linear elliptic difference inequalities with random coefficients’, Math. Comp. 55(191), 3753.
Kuo H.-J. and Trudinger N. (1992), ‘Discrete methods for fully nonlinear elliptic equations’, SIAM J. Numer. Anal. 29, 123135.
Kuo H.-J. and Trudinger N. (1996), ‘Positive difference operators on general meshes’, Duke Math. J. 83, 415433.
Kuo H.-J. and Trudinger N. (2000), ‘A note on the discrete Aleksandrov–Bakelman maximum principle’, Taiwanese J. Math. 4, 5564.
Lai M.-J. and Schumaker L. (2007), ‘Trivariate inline-graphic $C^{r}$ polynomial macroelements’, Constr. Approx. 26, 1128.
Lakkis O. and Pryer T. (2011), ‘A finite element method for second order nonvariational elliptic problems’, SIAM J. Sci. Comput. 33, 786801.
Lions P.-L. (1982), Generalized Solutions of Hamilton–Jacobi Equations, Vol. 69 of Research Notes in Mathematics , Pitman.
Lions P.-L. (1983), ‘Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations II: Viscosity solutions and uniqueness’, Comm. Partial Diff. Equations 8, 12291276.
Lions P.-L. and Mercier B. (1980), ‘Approximation numérique des équations de Hamilton–Jacobi–Bellman’, RAIRO Anal. Numér. 14, 369393.
Maugeri A., Palagachev D. and Softova L. (2000), Elliptic and Parabolic Equations with Discontinuous Coefficients, Vol. 109 of Mathematical Research , Wiley–VCH.
Menaldi J.-L. (1989), ‘Some estimates for finite difference approximations’, SIAM J. Control Optim. 27, 579607.
Mingione G. (2006), ‘Regularity of minima: An invitation to the dark side of the calculus of variations’, Appl. Math. 51, 355426.
Mirebeau J.-M. (2015), ‘Discretization of the 3D Monge–Ampere operator, between wide stencils and power diagrams’, ESAIM Math. Model. Numer. Anal. 49, 15111523.
Motzkin T. and Wasow W. (1953), ‘On the approximation of linear elliptic differential equations by difference equations with positive coefficients’, J. Math. Phys. 31, 253259.
Nadirashvili N. and Vlăduţ S. (2007), ‘Nonclassical solutions of fully nonlinear elliptic equations’, Geom. Funct. Anal. 17, 12831296.
Nadirashvili N. and Vlăduţ S. (2008), ‘Singular viscosity solutions to fully nonlinear elliptic equations’, J. Math. Pures Appl. (9) 89, 107113.
Nadirashvili N., Tkachev V. and Vlăduţ S. (2012), ‘A non-classical solution to a Hessian equation from Cartan isoparametric cubic’, Adv. Math. 231, 15891597.
Neilan M. (2010), ‘A nonconforming Morley finite element method for the fully nonlinear Monge–Ampère equation’, Numer. Math. 115, 371394.
Neilan M. (2013), ‘Quadratic finite element approximations of the Monge–Ampère equation’, J. Sci. Comput. 54, 200226.
Neilan M. (2017), ‘Convergence analysis of a finite element method for second order non-variational elliptic problems’, J. Numer. Math., to appear.
Nirenberg L. (1953), ‘On nonlinear elliptic partial differential equations and Hölder continuity’, Comm. Pure Appl. Math. 6, 103156; addendum, 395.
Nochetto R. and Zhang W. (2017a), ‘Discrete ABP estimate and convergence rates for linear elliptic equations in non-divergence form’, Found. Comput. Math., to appear.
Nochetto R. and Zhang W. (2017b), Pointwise rates of convergence for the Oliker–Prussner’s method for the Monge–Ampère equation. arXiv:1611.02786
Nochetto R., Ntogakas D. and Zhang W. (2017), Two-scale method for the Monge–Ampère equation: Convergence rates. Preprint.
Nochetto R., Otárola E. and Salgado A. J. (2015), ‘Convergence rates for the classical, thin and fractional elliptic obstacle problems’, Philos. Trans. A 373(2050), 20140449.
Oberman A. (2006), ‘Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems’, SIAM J. Numer. Anal. 44, 879895.
Oberman A. (2008), ‘Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and functions of the eigenvalues of the Hessian’, Discrete Contin. Dyn. Syst. Ser. B 10, 221238.
Øksendal B. (2003), Stochastic Differential Equations: An Introduction with Applications, sixth edition, Universitext, Springer.
Oliker V. and Prussner L. (1988), ‘On the numerical solution of the equation inline-graphic $(\unicode[STIX]{x2202}^{2}z/\unicode[STIX]{x2202}x^{2})(\unicode[STIX]{x2202}^{2}z/\unicode[STIX]{x2202}y^{2})-((\unicode[STIX]{x2202}^{2}z/\unicode[STIX]{x2202}x\unicode[STIX]{x2202}y))^{2}=f$ and its discretizations, I’, Numer. Math. 54, 271293.
Safonov M. (1980), ‘Harnack’s inequality for elliptic equations and Hölder property of their solutions’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96, 272287; 312.
Safonov M. (1987), ‘Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients’, Mat. Sb. (N.S.) 132(174), 275288.
Salgado A. J. and Zhang W. (2016), Finite element approximation of the Isaacs equation. arXiv:1512.09091v1
Schatz A. and Wahlbin L. (1982), ‘On the quasi-optimality in inline-graphic $L_{\infty }$ of the inline-graphic ${\dot{H}}^{1}$ -projection into finite element spaces’, Math. Comp. 38(157), 122.
Silvestre L. (2015), Viscosity solutions of elliptic equations. http://math.uchicago.edu/∼luis/preprints/viscosity-solutions.pdf
Smears I. and Süli E. (2013), ‘Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients’, SIAM J. Numer. Anal. 51, 20882106.
Smears I. and Süli E. (2014), ‘Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes coefficients’, SIAM J. Numer. Anal. 52, 9931016.
Smears I. and Süli E. (2016), ‘Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients’, Numer. Math. 133, 141176.
Stojanovic S. (2005), ‘Risk premium and fair option prices under stochastic volatility: The HARA solution’, CR Math. Acad. Sci. Paris 340, 551556.
Strang G. and Fix G. (1973), An Analysis of the Finite Element Method Prentice-Hall Series in Automatic Computation, Prentice-Hall.
Tolstoy L. (1998), Anna Karenina, Project Gutenberg, EBook #1399.
Trudinger N. (1988), ‘Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations’, Rev. Mat. Iberoamericana 4, 453468.
Trudinger N. and Wang X.-J. (2005), ‘The affine Plateau problem’, J. Amer. Math. Soc. 18, 253289.
Trudinger N. and Wang X.-J. (2008), ‘Boundary regularity for the Monge–Ampère and affine maximal surface equations’, Ann. of Math. (2) 167, 9931028.
Turanova O. (2015), ‘Error estimates for approximations of nonhomogeneous nonlinear uniformly elliptic equations’, Calc. Var. Partial Diff. Equations 54, 29392983.
Villani C. (2003), Topics in Optimal Transportation, Vol. 58 of Graduate Studies in Mathematics , AMS.
Wang C. and Wang J. (2017), ‘A primal–dual weak Galerkin finite element method for second order elliptic equations in non-divergence form’, Math. Comp., to appear.
Wang X.-J. (1996), ‘Regularity for Monge–Ampère equation near the boundary’, Analysis 16, 101107.
Witte J. and Reisinger C. (2012), ‘Penalty methods for the solution of discrete HJB equations: Continuous control and obstacle problems’, SIAM J. Numer. Anal. 50, 595625.
Xu J. and Zikatanov L. (1999), ‘A monotone finite element scheme for convection-diffusion equations’, Math. Comp. 68(228), 14291446.
Ženíšek A. (1973), Hermite interpolation on simplexes in the finite element method. In Proc. Equadiff III: Third Czechoslovak Conf. Differential Equations and their Appl., Brno, 1972, Purkyně University, Brno, 271–277. Vol. 1 of Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis, Ser. Monograph .
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 13
Total number of PDF views: 189 *
Loading metrics...

Abstract views

Total abstract views: 598 *
Loading metrics...

* Views captured on Cambridge Core between 5th May 2017 - 19th October 2017. This data will be updated every 24 hours.