Skip to main content Accessibility help
×
×
Home

Stochastic finite element methods for partial differential equations with random input data*

  • Max D. Gunzburger (a1), Clayton G. Webster (a2) and Guannan Zhang (a3)

Abstract

The quantification of probabilistic uncertainties in the outputs of physical, biological, and social systems governed by partial differential equations with random inputs require, in practice, the discretization of those equations. Stochastic finite element methods refer to an extensive class of algorithms for the approximate solution of partial differential equations having random input data, for which spatial discretization is effected by a finite element method. Fully discrete approximations require further discretization with respect to solution dependences on the random variables. For this purpose several approaches have been developed, including intrusive approaches such as stochastic Galerkin methods, for which the physical and probabilistic degrees of freedom are coupled, and non-intrusive approaches such as stochastic sampling and interpolatory-type stochastic collocation methods, for which the physical and probabilistic degrees of freedom are uncoupled. All these method classes are surveyed in this article, including some novel recent developments. Details about the construction of the various algorithms and about theoretical error estimates and complexity analyses of the algorithms are provided. Throughout, numerical examples are used to illustrate the theoretical results and to provide further insights into the methodologies.

Copyright

Footnotes

Hide All
*

Colour online for monochrome figures available at journals.cambridge.org/anu.

Footnotes

References

Hide All
Acharjee, S. and Zabaras, N. (2007), ‘A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes’, Comput. Struct. 85, 244254.
Agarwal, N. and Aluru, N. R. (2009), ‘A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties’, J. Comput. Phys. 228, 7662.
Ainsworth, M. and Oden, J.-T. (2000), A Posteriori Error Estimation in Finite Element Analysis, Wiley.
Dongarra, J., Hittinger, J., Bell, J., Chacon, L., Falgout, R., Heroux, M., Hovland, P., Ng, E., Webster, C., and Wild, S. (2013), Applied mathematics research for exascale computing. Technical report, US Department of Energy.
Askey, R. and Wilson, J. A. (1985), Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, Vol. 319 of Memoirs of the American Mathematical Society, AMS.
Babuška, I. M. and Chatzipantelidis, P. (2002), ‘On solving elliptic stochastic partial differential equations’, Comput. Methods Appl. Mech. Engrg 191, 40934122.
Babuška, I. M. and Chleboun, J. (2002), ‘Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions’, Math. Comp. 71, 13391370.
Babuška, I. M. and Chleboun, J. (2003), ‘Effects of uncertainties in the domain on the solution of Dirichlet boundary value problems’, Numer. Math. 93, 583610.
Babuška, I. M. and Oden, J. T. (2006), ‘The reliability of computer predictions: Can they be trusted?’, Internat. J. Numer. Anal. Model. 3, 255272.
Babuška, I. M. and Strouboulis, T. (2001), The Finite Element Method and its Reliability, Numerical Mathematics and Scientific Computation, Oxford Science Publications.
Babuška, I. M., Liu, K. M. and Tempone, R. (2003), ‘Solving stochastic partial differential equations based on the experimental data’, Math. Models Methods Appl. Sci. 13, 415444.
Babuška, I. M., Nobile, F. and Tempone, R. (2005 a), ‘Worst-case scenario analysis for elliptic problems with uncertainty’, Numer. Math. 101, 185219.
Babuška, I. M., Nobile, F. and Tempone, R. (2007 a), ‘A stochastic collocation method for elliptic partial differential equations with random input data’, SIAM J. Numer. Anal. 45, 10051034.
Babuska, I., Nobile, F. and Tempone, R. (2007 b), ‘Reliability of computational science’, Numer. Methods Partial Diff. Equations 23, 753784.
Babuška, I. M., Nobile, F. and Tempone, R. (2008), ‘A systematic approach to model validation based on Bayesian updates and prediction related rejection criteria’, Comput. Methods Appl. Mech. Engrg 197, 25172539.
Babuška, I. M., Tempone, R. and Zouraris, G. E. (2004), ‘Galerkin finite element approximations of stochastic elliptic partial differential equations’, SIAM J. Numer. Anal. 42, 800825.
Babuška, I. M., Tempone, R. and Zouraris, G. E. (2005b), ‘Solving elliptic boundary value problems with uncertain coefficients by the finite element method: The stochastic formulation’, Comput. Methods Appl. Mech. Engrg 194, 12511294.
Barth, A. and Lang, A. (2012), ‘Multilevel Monte Carlo method with applications to stochastic partial differential equations’, Internat. J. Comput. Math. 89, 24792498.
Barth, A., Lang, A. and Schwab, C. (2013), ‘Multilevel Monte Carlo method for parabolic stochastic partial differential equations’, BIT Numer. Math. 53, 327.
Barth, A., Schwab, C. and Zollinger, N. (2011), ‘Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients’, Numer. Math. 119, 123161.
Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J., Cavendish, J., Lin, C. H. and Tu, J. (2007), ‘A framework for validation of computer models’, Technometrics 49, 138154.
Beck, J. L. and Au, S. K. (2002), ‘Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation’, J. Engrg Mech. 128, 380391.
Beck, J., Nobile, F., Tamellini, L. and Tempone, R. (2011), Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison. In Spectral and High Order Methods for Partial Differential Equations, Vol. 76 of Lecture Notes in Computational Science and Engineering, Springer, pp. 4362.
Beck, J., Nobile, F., Tamellini, L. and Tempone, R. (2014), ‘Convergence of quasioptimal stochastic Galerkin methods for a class of PDEs with random coefficients’, Comput. Math. Appl. 67, 732751.
Beck, J., Tempone, R. and Nobile, F. (2012), ‘On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods’, Math. Models Methods Appl. Sci. 22, 1250023.
Ben-Haim, Y. (1996), Robust Reliability in the Mechanical Sciences, Springe.
Benth, r. F. E. and Gjerde, J. (1998 a), ‘Convergence rates for finite element approximations of stochastic partial differential equations’, Stochastics Stochastic Rep. 63, 313326.
Benth, F. E. and Gjerde, J. (1998 b), Numerical solution of the pressure equation for fluid flow in a stochastic medium. In Stochastic Analysis and Related Topics VI: Geilo, 1996, Vol. 42 of Progress in Probability, Birkhäuser, pp. 175186.
Bernardini, A. (1999), What are the random fuzzy sets and how to use them for uncertainty modelling in engineering systems? In Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization (Elishakoff, I., ed.), Vol. 388 of CISM Course and Lectures, Springer, pp. 63125.
Box, G. E. P. (1973), Bayesian Inference in Statistical Analysis, Wiley.
Braack, M. and Ern, A. (2003), ‘A posteriori control of modeling errors and discretization errors’, Multiscale Model. Simul. 1, 221238.
Breidt, J., Butler, T. and Estep, D. (2011), ‘A measure-theoretic computational method for inverse sensitivity problems I: Method and analysis’, SIAM J. Numer. Anal. 49, 18361859.
Brenner, S. C. and Scott, L. R. (2008), The Mathematical Theory ofFinite Element Methods, Springer.
Bungartz, H.-J. and Griebel, M. (2004), Sparse grids. In Acta Numerica, Vol. 13, Cambridge University Press, pp. 1123.
Burkardt, J., Gunzburger, M. and Lee, H.-C. (2006 a), ‘Centroidal Voronoi tessellation-based reduced-order modeling of complex systems’, SIAM J. Sci. Comput. 28, 459484.
Burkardt, J., Gunzburger, M. and Lee, H.-C. (2006b), ‘POD and CVT-based reduced-order modeling of Navier-Stokes flows’, Comp. Meth. Appl. Mech. Engrg 196, 337355.
Burkardt, J., Gunzburger, M. and Webster, C. G. (2007), ‘Reduced order modeling of some nonlinear stochastic partial differential equations’, Internat. J. Numer. Anal. Model. 4, 368391.
Chang, C.-J. and Joseph, V. (2013), ‘Model calibration through minimal adjustments', Technometrics, published online.
Charrier, J., Scheichl, R. and Teckentrup, A. (2013), ‘Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods’, SIAM J. Numer. Anal. 51, 322352.
Cheung, S. H. and Beck, J. L. (2010), Comparison of different model classes for Bayesian updating and robust predictions using stochastic state-space system models. In Safety, Reliability and Risk ofStructures, Infrastructures and Engineering Systems, CRC Press, pp. 18.
Cheung, S. H., Oliver, T. A., Prudencio, E. E., Prudhomme, S. and Moser, R. D. (2011), ‘Bayesian uncertainty analysis with applications to turbulence modeling’, Reliab. Engrg System Safety 96, 11371149.
Ching, J. and Beck, J. L. (2004), ‘Bayesian analysis of the phase II IASC-ASCE structural health monitoring experimental benchmark data’, J. Engrg Mech. 130, 12331244.
Ciarlet, P. G. (1978), The Finite Element Method for Elliptic Problems, North-Holland.
Clenshaw, C. W. and Curtis, A. R. (1960), ‘A method for numerical integration on an automatic computer’, Numer. Math. 2, 197205.
Cliffe, K. A., Giles, M. B., Scheichl, R. and Teckentrup, A. L. (2011), ‘Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients’, Computing and Visualization in Science 14, 315.
Cohen, A., DeVore, R. and Schwab, C. (2011), ‘Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE's’, Anal. Appl. 9, 1147.
Cullen, A. C. and Frey, H. C. (1999), Probabilistic Techniques Exposure Assessment, Plenum.
Dauge, M. and Stevenson, R. (2010), ‘Sparse tensor product wavelet approximation of singular functions’, SIAM J. Math. Anal. 42, 22032228.
Deb, M.-K. (2000), Solution of stochastic partial differential equations (SPDEs) using Galerkin method: Theory and applications. PhD thesis, The University of Texas at Austin.
Deb, M. K., Babuška, I. M. and Oden, J. T. (2001), ‘Solution of stochastic partial differential equations using Galerkin finite element techniques’, Comput. Methods Appl. Mech. Engrg 190, 63596372.
Desceliers, C., Ghanem, R. and Soize, C. (2005), ‘Polynomial chaos representation ofv a stochastic preconditioner’, Internat. J. Numer. Methods Engrg 64, 618634.
DeVore, R. A. and Lorentz, G. G. (1993), Constructive Approximation, Vol. 303 of Grundlehren der Mathematischen Wissenschaften, Springer.
Doostan, A. and Iaccarino, G. (2009), ‘A least-squares approximation of partial differential equations with high-dimensional random inputs’, J. Comput. Phys. 228, 43324345.
Doostan, A. and Owhadi, H. (2011), ‘A non-adapted sparse approximation of PDEs with stochastic inputs’, J. Comput. Phys. 230, 30153034.
Doostan, A., Ghanem, R. and Red-Horse, J. (2007), ‘Stochastic model reduction for chaos representations’, Comput. Methods Appl. Mech. Engrg 196, 39513966.
Du, Q. and Gunzburger, M. (2002 a), ‘Grid generation and optimization based on centroidal Voronoi tessellations’, Appl. Math. Comput. 133, 591607.
Du, Q. and Gunzburger, M. (2002b), Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation. In Proc. FEDSM'02, ASME.
Du, Q. and Gunzburger, M. (2003), Centroidal Voronoi tessellation based proper orthogonal decomposition analysis. In Control and Estimation of Distributed Parameter Systems (Desch, W.et al., eds), Birkhäuser.
Du, Q., Faber, V. and Gunzburger, M. (1999), ‘Centroidal Voronoi tessellations: Applications and algorithms’, SIAM Review 41, 637676.
Du, Q., Gunzburger, M. and Ju, L. (2002), ‘Probabilistic algorithms for centroidal Voronoi tessellations and their parallel implementation’, Parallel Comput. 28, 14771500.
Du, Q., Gunzburger, M. and Ju, L. (2003a), ‘Constrained centroidal Voronoi tessellations for surfaces’, SIAM J. Sci. Comput. 24, 14881506.
Du, Q., Gunzburger, M. and Ju, L. (2003 b), ‘Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere’, Comput. Methods Appl. Mech. Engrg 192, 39333957.
Du, Q., Gunzburger, M. and Ju, L. (2010), ‘Advances in studies and applications of centroidal Voronoi tessellations’, Numer. Math. Theor. Meth. Appl. 3, 119142.
Du, Q., Gunzburger, M., Ju, L. and Wang, X. (2006), ‘Centroidal Voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration’, J. Math. Imag. Vision 24, 177194.
Dubois, D. and Prade, H., eds (2000), Fundamentals of Fuzzy Sets, Vol. 7 of Handbooks of Fuzzy Sets, Kluwer.
Dzjadyk, V. K. and Ivanov, V. V. (1983), ‘On asymptotics and estimates for the uniform norms of the Lagrange interpolation polynomials corresponding to the Chebyshev nodal points’, Analysis Mathematica 9, 8597.
Eiermann, M., Ernst, O. G. and Ullmann, E. (2007), ‘Computational aspects of the stochastic finite element method’, Computing and Visualization in Science 10, 315.
Eldred, M., Webster, C. G. and Constantine, P. G. (2008), Evaluation of nonintrusive approaches for Wiener–Askey generalized polynomial chaos. AIAA paper 1892.
Elishakoff, I. and Ren, Y. (2003), Finite Element Methods for Structures With Large Variations, Oxford University Press.
Elishakoff, I., ed. (1999), Whys and Hows in Uncertainty Modelling: Probability, Fuzziness and Anti-Optimization, Vol. 388 of CISM Course and Lectures, Springer.
Elman, H. and Miller, C. (2011), Stochastic collocation with kernel density estimation. Technical report, Department of Computer Science, University of Maryland.
Elman, H. C., Ernst, O. G. and O'Leary, D. P. (2001), ‘A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations’, SIAM J. Sci. Comput. 23, 12911315.
Elman, H. C., Miller, C. W., Phipps, E. T. and Tuminaro, R. S. (2011), ‘Assessment of collocation and Galerkin approaches to linear diffusion equations with random data’, Internat. J. Uncertainty Quantification 1, 1933.
Eriksson, K., Estep, D., Hansbo, P. and Johnson, C. (1995), Introduction to computational methods for differential equations. In Theory and Numerics of Ordinary and Partial Differential Equations, Vol.IV of Advances in Numerical Analysis, Oxford University Press, pp. 77122.
Theory and Numerics of Ordinary and Partial Differential Equations (Advances in Numerical Analysis Vol. 4) by Ainsworth, M. and Marletta, M. (20 07 1995)
Ernst, O. G. and Ullmann, E. (2010), ‘Stochastic Galerkin matrices’, SIAM Matrix J. Anal. Appl. 31, 18481872.
Ernst, O. G., Powell, C. E., Silvester, D. J. and Ullmann, E. (2009), ‘Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data’, SIAM J. Sci. Comput. 31, 14241447.
Ferson, S., Kreinovich, V., Ginzburg, L., Mayers, D. and Sentz, K. (2003), Constructing probability boxed and Demster–Shafer structures. Sandia Report SAND 2002-4015, Sandia National Laboratories.
Fichtl, E. D., Prinja, A. K. and Warsa, J. S. (2009), Stochastic methods for uncertainty quantification in radiation transport. In International Conference on Mathematics, Computational Methods and Reactor Physics.
Fishman, G. (1996), Monte Carlo: Concepts, Algorithms, and Applications, Springer Series in Operations Research and Financial Engineering, Springer.
Foo, J. and Karniadakis, G. E. (2010), ‘Multi-element probabilistic collocation method in high dimensions’, J. Comput. Phys. 229, 15361557.
Foo, J., Wan, X. and Karniadakis, G. (2008), ‘The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications’, J. Comput. Phys. 227, 95729595.
Frauenfelder, P., Schwab, C. and Todor, R. A. (2005), ‘Finite elements for elliptic problems with stochastic coefficients’, Comput. Methods Appl. Mech. Engrg 194, 205228.
Ganapathysubramanian, B. and Zabaras, N. (2007), ‘Sparse grid collocation schemes for stochastic natural convection problems’, J. Comput. Phys. 225, 652685.
Gaudagnini, A. and Neumann, S. (1999), ‘Nonlocal and localized analysis of conditional mean steady state flow in bounded, randomly nonuniform domains. Part 1: Theory and computational approach. Part 2: Computational examples’, Water Resour. Res. 35, 29993039.
Gautschi, W. (2004), Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation, Oxford Science Publications.
Gerstner, T. and Griebel, M. (1998), ‘Numerical integration using sparse grids’, Numer. Algorithms 18, 209232.
Gerstner, T. and Griebel, M. (2003), ‘Dimension-adaptive tensor-product quadrature’, Computing 71, 6587.
Ghanem, R. (1999), ‘Ingredients for a general purpose stochastic finite elements implementation’, Comput. Methods Appl. Mech. Engrg 168, 1934.
Ghanem, R. and Red-Horse, J. (1999), ‘Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach’, Physica D 133, 137144.
Ghanem, R. and Spanos, P. D. (2003), Stochastic Finite Elements: A Spectral Approach, revised edition, Dover.
Ghanem, R. G. and Kruger, R. M. (1996), ‘Numerical solution of spectral stochastic finite element systems’, Comput. Methods Appl. Mech. Engrg 129, 289303.
Ghanem, R. G. and Spanos, P. D. (1991), Stochastic Finite Elements: A Spectral Approach, Springer.
Giles, M. B. (2008), ‘Multilevel Monte Carlo path simulation’, Operations Research 56, 607617.
Glimm, J., Hou, S., Lee, Y.-H., Sharp, D. H. and Ye, K. (2003), Solution error models for uncertainty quantification. In Advances in Differential Equations and Mathematical Physics: Birmingham, AL, 2002, Vol. 327 of Contemporary Mathematics, AMS, pp. 115140.
Gordon, A. and Powell, C. (2012), ‘On solving stochastic collocation systems with algebraic multigrid’, IMA J. Numer. Anal. 32, 10511070.
Griebel, M. (1998), ‘Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences’, Computing 61, 151179.
Grigoriu, M. (2002), Stochastic Calculus: Applications in Science and Engineering, Birkhäuser.
Grisvard, P. (1985), Elliptic Problems in Non-Smooth Domains, Pitman.
Gunzburger, M. and Labovsky, A. (2011), ‘Effects of approximate deconvolution models on the solution of the stochastic Navier-Stokes equations’, J. Comput. Math. 29, 131140.
Gunzburger, M., Jantsch, P., Teckentrup, A. and Webster, C. G. (2014), ‘A multilevel stochastic collocation method for partial differential equations with random input data’, SIAM J. Uncertainty Quantification, submitted.
Gunzburger, M., Trenchea, C. and Webster, C. G. (2013), ‘A generalized stochastic collocation approach to constrained optimization for random data identification problems’, Numerical Methods for PDEs, submitted.
Gunzburger, M., Webster, C. G. and Zhang, G. (2014), An adaptive wavelet stochastic collocation method for irregular solutions of stochastic partial differential equations with random input data. In Sparse Grids and Applications: Munich 2012, Vol. 97 of Lecture Notes in Computational Science and Engineering, Springer, pp. 137170.
Hammersley, J. and Handscomb, D. (1964), Monte Carlo Methods, Halsted.
Hardin, R. and Sloane, N. (1993), ‘A new approach to the construction of optimal designs’, J. Statist. Planning Inference 57, 339369.
Helton, J. C. (1997), ‘Analysis in the presence of stochastic and subjective uncertainties’, J. Statist. Comput. Simulation 57, 376.
Helton, J. C. and Davis, F. J. (2003), ‘Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems’, Reliab. Engrg System Safety 8l, 2369.
Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A. and Ryne, R. D. (2004), ‘Combining field data and computer simulations for calibration and prediction’, SIAM J. Sci. Comput. 26, 448466.
Hlaváček, J., Chleboun, I. and Babuška, I. M. (2004), Uncertain Input Data Problems and the Worst Scenario Method, Elsevier.
Hosder, S. and Walters, R. W. (2007), A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations. In 44th AIAA Aerospace Sciences Meeting.
Jacobsen, D., Gunzburger, M., Ringler, T., Burkardt, J. and Peterson, J. (2013), ‘Parallel algorithms for planar and spherical Delaunay construction with an application to centroidal Voronoi tessellations’, Geo. Mod. Develop. 6, 14271466.
Jakeman, J. D., Archibald, R. and Xiu, D. (2011), ‘Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids’, J. Comput. Phys. 230, 39773997.
Jantsch, P., Webster, C. and Zhang, G. (2014), A hierarchical stochastic collocation method for adaptive acceleration of PDEs with random input data. ORNL Technical Report.
Jin, C., Cai, X. and Li, C. (2007), ‘Parallel domain decomposition methods for stochastic elliptic equations’, SIAM J. Sci. Comput. 29, 20962114.
Johnson, C. (2000), Adaptive computational methods for differential equations. In ICIAM 99: Edinburgh, Oxford University Press, pp. 96104.
Joseph, V. R. (2013), ‘A note on nonnegative DoIt approximation’, Technometrics 55, 103107.
Joseph, V. R. and Melkote, S. N. (2009), ‘Statistical adjustments to engineering models’, J. Quality Technology 4l, 362375.
Jouini, E., Cvitanić, J. and Musiela, M., eds (2001), Option Pricing, Interest Rates and Risk Management, Cambridge University Press.
Ju, L., Gunzburger, M. and Zhao, W. (2006), ‘Adaptive finite element methods for elliptic PDEs based on conforming centroidal Voronoi–Delaunay triangulations’, SIAM J. Sci. Comput. 28, 20232053.
Kahn, H. and Marshall, A. (1953), ‘Methods of reducing sample size in Monte Carlo computations’, J. Oper. Res. Soc. Amer. 1, 263271.
Karniadakis, G., Su, C.-H., Xiu, D., Lucor, D., Schwab, C. and Todor, R. (2005), Generalized polynomial chaos solution for diferential equations with random inputs. SAM Report 2005-01, ETH Zürich.
Keese, A. and Matthies, H. G. (2005), ‘Hierarchical parallelisation for the solution of stochastic finite element equations’, Comput. Struct. 83, 10331047.
Kennedy, M. C. and O'Hagan, A. (2001), ‘Bayesian calibration of computer models’ (with discussion), J. Royal Statist. Soc. B 63, 425464.
Ketelsen, C., Scheichl, R. and Teckentrup, A. L. (2013), A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow. arXiv:1303.7343
Kleiber, M. and Hien, T.-D. (1992), The Stochastic Finite Element Method, Wiley.
Klimke, A. and Wohlmuth, B. (2005), ‘Algorithm 847: Spinterp: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB’, ACM Trans. Math. Software 31, 561579.
Kramosil, I. (2001), Probabilistic Analysis of Belief Functions, Kluwer.
Maître, O. P. Le and Knio, O. M. (2010), Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Springer.
Maître, O. P. Le, Knio, O. M., Najm, H. N. and Ghanem, R. G. (2004 a), ‘Uncertainty propagation using Wiener-Haar expansions’, J. Comput. Phys. 197, 2857.
Maître, O. P. Le, Najm, H. N., Ghanem, R. G. and Knio, O. M. (2004b), ‘Multiresolution analysis of Wiener-type uncertainty propagation schemes’, J. Comput. Phys. 197, 502531.
Lemm, J. C. (2003), Bayesian Field Theory, Johns Hopkins University Press.
Li, C. F., Feng, Y. T., Owen, D. R. J., Li, D. F. and Davis, I. M. (2007), ‘A Fourier–Karhunen–Loeve discretization scheme for stationary random material properties in SFEM’, Internat. J. Numer. Methods Engrg. 73, 19421965.
Lin, G., Tartakovsky, A. M. and Tartakovsky, D. M. (2010), ‘Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids’, J. Comput. Phys. 229, 69957012.
Loève, M. (1977), Probability Theory I, fourth edition, Vol. 45 of Graduate Texts in Mathematics, Springer.
Loève, M. (1978), Probability Theory II, fourth edition, Vol. 46 of Graduate Texts in Mathematics, Springer.
Lu, Z. and Zhang, D. (2004), ‘A comparative study on uncertainty quantification for flow in randomly heterogeneous media using Monte Carlo simulations and conventional and KL-based moment-equation approaches’, SIAM J. Sci. Comput. 26, 558577.
Lucor, D. and Karniadakis, G. E. (2004), ‘Predictability and uncertainty in flowstructure interactions’, Eur. J. Mech. B Fluids 23, 4149.
Lucor, D., Meyers, J. and Sagaut, P. (2007), ‘Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos’, J. Fluid Mech. 585, 255279.
Lucor, D., Xiu, D., Su, C.-H. and Karniadakis, G. E. (2003), ‘Predictability and uncertainty in CFD’, Internat. J. Numer. Methods Fluids 43, 483505.
Ma, X. and Zabaras, N. (2009), ‘An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic diferential equations’, J. Comput. Phys. 228, 30843113.
Ma, X. and Zabaras, N. (2010), ‘An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial diferential equations’, J. Comput. Phys. 229, 38843915.
Marzouk, Y. and Xiu, D. (2009), ‘A stochastic collocation approach to Bayesian inference in inverse problems’, Commun. Comput. Phys. 6, 826847.
Marzouk, Y. M., Najm, H. N. and Rahn, L. A. (2007), ‘Stochastic spectral methods for efficient Bayesian solution of inverse problems’, J. Comput. Phys. 224, 560586.
Mathelin, L. and Gallivan, K. (2010), ‘A compressed sensing approach for partial diferential equations with random input data’, Comput. Methods Appl. Mech. Engrg, submitted.
Mathelin, L., Hussaini, M. Y. and Zang, T. A. (2005), ‘Stochastic approaches to uncertainty quantification in CFD simulations’, Numer. Algorithms 38, 209236.
Matthies, H. G. and Keese, A. (2005), ‘Galerkin methods for linear and nonlinear elliptic stochastic partial diferential equations’, Comput. Methods Appl. Mech. Engrg 194, 12951331.
Melchers, R. E. (1999), Structural Reliability, Analysis and Prediction, Wiley.
G. Migliorati, Nobile, F., Schwerin, E. Von and Tempone, R. (2013), ‘Approximation of quantities of interest in stochastic PDEs by the random discrete L 2 projection on polynomial spaces', SIAM J. Sci. Comput. 35, A1440A1460.
Moon, K.-S., von Schwerin, E., Szepessy, A. and Tempone, R. (2006), An adaptive algorithm for ordinary, stochastic and partial diferential equations. In Recent Advances in Adaptive Computation, Vol. 381 of Contemporary Mathematics, AMS, pp. 369388.
Mrczyk, J., ed. (1997), Computational Mechanics in a Meta Computing Perspective, Center for Numerical Methods in Engineering, Barcelona.
Muto, M. and Beck, J. L. (2008), ‘Bayesian updating and model class selection for hysteretic structural models using stochastic simulation’, J. Vibration Control 14, 734.
Narayanan, V. A. B. and Zabaras, N. (2004), ‘Stochastic inverse heat conduction using a spectral approach',’ Internat. J. Numer. Methods Engrg 60, 15691593.
Narayanan, V. A. B. and Zabaras, N. (2005 a), ‘Variational multiscale stabilized FEM formulations for transport equations: Stochastic advection-difusion and incompressible stochastic Navier-Stokes equations’, J. Comput. Phys. 202, 94133.
Narayanan, V. A. B. and Zabaras, N. (2005 b), ‘Using stochastic analysis to capture unstable equilibrium in natural convection’, J. Comput. Phys. 208, 134153.
Nguyen, H., Burkardt, J., Gunzburger, M., Ju, L. and Saka, Y. (2009), ‘Constrained CVT meshes and a comparison of triangular mesh generators’, Comp. Geom. Theo. Appl. 42, 119.
Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, Vol. 63 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.
Nobile, F. and Tempone, R. (2009), ‘Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients’, Internat. J. Numer. MethodsEngrg 80, 9791006.
Nobile, F., Tempone, R. and Webster, C. G. (2007), The analysis of a sparse grid stochastic collocation method for partial differential equations with high-dimensional random input data. Technical Report SAND2007-8093, Sandia National Laboratories.
Nobile, F., Tempone, R. and Webster, C. G. (2008 a), ‘A sparse grid stochastic collocation method for partial differential equations with random input data’, SIAM J. Numer. Anal. 46, 23092345.
Nobile, F., Tempone, R. and Webster, C. G. (2008 b), ‘An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data’, SIAM J. Numer. Anal. 46, 24112442.
Novak, E. (1988), ‘Stochastic properties of quadrature formulas’, Numer. Math. 53, 609620.
Oberkampf, W. L., Helton, J. C. and Sentz, K. (2001), Mathematical representation of uncertainty. AIAA paper 2001-1645.
Oden, J. T. and Prudhomme, S. (2002), ‘Estimation of modeling error in computational mechanics’, J. Comput. Phys. 182, 496515.
Oden, J. T. and Vemaganti, K. S. (2000), ‘Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials I: Error estimates and adaptive algorithms’, J. Comput. Phys. 164, 2247.
Oden, J. T., Babuška, I. M., Nobile, F., Feng, Y. and Tempone, R. (2005 a), ‘Theory and methodology for estimation and control of errors due to modeling, approximation, and uncertainty’, Comput. Methods Appl. Mech. Engrg 194, 195204.
Oden, J. T., Belytschko, T., Babuska, I. and Hughes, T. J. R. (2003), ‘Research directions in computational mechanics’, Comput. Methods Appl. Mech. Engrg 192, 913922.
Oden, J. T., Prudhomme, S. and Bauman, P. (2005 b), ‘On the extension of goal-oriented error estimation and hierarchical modeling to discrete lattice models’, Comput. Methods Appl. Mech. Engrg 194, 36683688.
Oden, J. T., Prudhomme, S., Hammerand, D. C. and Kuczma, M. S. (2001), ‘Modeling error and adaptivity in nonlinear continuum mechanics’, Comput. Methods Appl. Mech. Engrg 190, 66636684.
Parks, M., De Sturler, E., Mackey, G., Johnson, D. and Maiti, S. (2006), ‘Recycling Krylov subspaces for sequences of linear systems’, SIAM J. Sci. Comput. 28, 16511674.
Pellissetti, M. F. and Ghanem, R. G. (2000), ‘Iterative solution of systems of linear equations arising in the context of stochastic finite elements’, Adv. Engineering Software 31, 607616.
Phipps, E., Eldred, M., Salinger, A. and Webster, C. (2008), Capabilities for uncertainty in predictive science. Technical Report SAND2008-6527, Sandia National Laboratories.
Pope, S. (1981), ‘Transport equation for the joint probability density function of velocity and scalars in turbulent flow’, Phys. Fluids 24, 588596.
Pope, S. (1982), ‘The application of PDF transport equations to turbulent reactive flows’, J. Non-Equil. Thermody. 7, 114.
Powell, C. E. and Elman, H. C. (2009), ‘Block-diagonal preconditioning for spectral stochastic finite-element systems’, IMA J. Numer. Anal. 29, 350375.
Powell, C. E. and Ullmann, E. (2010), ‘Preconditioning stochastic Galerkin saddle point systems’, SIAM J. Matrix Anal. Appl. 31, 28132840.
Press, W., Teukolsky, S., Vetterling, W. and Flannery, B. (2007), Numerical Recipes: The Art of Scientific Computing, Cambridge University Press.
Pukelsheim, F. (1993), Optimal Design of Experiments, SIAM.
Qian, Z. and Wu, C. F. J. (2008), ‘Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments’, Technometrics 50, 192204.
Qian, Z., Seepersad, C., Joseph, R., Allen, J. and Wu, C. F. J. (2006), ‘Building surrogate models based on detailed and approximate simulations’, ASME J. Mech. Design 128, 668677.
Rao, M. M. and Swift, R. J. (2006), Probability Theory with Applications, Vol. 582 of Mathematics and its Applications, second edition, Springer.
Reagana, M. T., Najm, H. N., Ghanem, R. G. and Knio, O. M. (2003), ‘Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection’, Combustion and Flame 132, 545555.
Regan, H. M., Ferson, S. and Berleant, D. (2004), ‘Equivalence of methods for uncertainty propagation of real-valued random variables’, Internat. J. Approx. Reason. 36, 130.
Reilly, J., Stone, P. H., Forest, C. E., Webster, M. D., Jacoby, H. D. and Prinn, R. G. (2001), ‘Uncertainty and climate change assessments’, Science 293, 430433.
Ringler, T., Ju, L. and Gunzburger, M. (2008), ‘A multi-resolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations’, Ocean Dyn. 58, 475498.
Ripley, B. (1987), Stochastic Simulation, Wiley.
Roman, L. and Sarkis, M. (2006), ‘Stochastic Galerkin method for elliptic SPDEs: A white noise approach’, Discrete Contin. Dyn. Syst. B 6, 941955.
Romero, V., Burkardt, J., Gunzburger, M. and Peterson, J. (2005), Initial evaluation of pure and Latinized centroidal Voronoi tessellation for non-uniform statistical sampling. In Sensitivity Analysis of Model Output, Los Alamos National Laboratory, pp. 380401.
Romero, V., Burkardt, J., Gunzburger, M., Peterson, J. and Krishnamurthy, K. (2003 a), Initial application and evaluation of a promising new sampling method for response surface generation: Centroidal Voronoi tessellations. In Proc. 44th AIAA/AME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 14881506. AIAA paper 2003-2008.
Romero, V., Gunzburger, M., Burkardt, J. and Peterson, J. (2003 b), Initial evaluation of centroidal Voronoi tessellation method for statistical sampling and function integration. In Fourth International Symposium on Uncertainty Modeling and Analysis, ISUMA, pp. 174183.
Romero, V., Gunzburger, M., Burkardt, J. and Peterson, J. (2006), ‘Comparison of pure and “Latinized” centroidal Voronoi tessellation against other statistical sampling methods’, Reliab. Engrg System Safety 91, 12661280.
Romkes, A. and Oden, J. T. (2004), ‘Adaptive modeling of wave propagation in heterogeneous elastic solids’, Comput. Methods Appl. Mech. Engrg 193, 539559.
Rubinstein, R. (1981), Simulation and the Monte Carlo Method, Wiley.
Rubinstein, R. and Choudhari, M. (2005), ‘Uncertainty quantification for systems with random initial conditions using Wiener-Hermite expansions’, Stud. Appl. Math. 114, 167188.
Rudin, W. (1987), Real and Complex Analysis, third edition, McGraw-Hill.
Saka, Y., Gunzburger, M. and Burkardt, J. (2007), ‘Latinized, improved LHS, and CVT point sets in hypercubes’, Internat. J. Numer. Anal. Model. 4, 729743.
Sauer, T. and Xu, Y. (1995), ‘On multivariate Lagrange interpolation’, Math. Comp. 64, 11471170.
Schwab, C. and Todor, R.-A. (2003a), ‘Sparse finite elements for elliptic problems with stochastic loading’, Numer. Math. 95, 707734.
Schwab, C. and Todor, R. A. (2003 b), ‘Sparse finite elements for stochastic elliptic problems: Higher order moments’, Computing 71, 4363.
Simoncini, V. and Szyld, D. B. (2007), ‘Recent computational developments in krylov subspace methods for linear systems’, Numer. Linear Algebra Appl. 14, 159.
Smith, P., Shafi, M. and Gao, H. (1997), ‘Quick simulation: A review of importance sampling techniques in communication systems’, IEEE J. Select. Areas Commun. 15, 597613.
Smolyak, S. (1963), ‘Quadrature and interpolation formulas for tensor products of certain classes of functions’, Dokl. Akad. Nauk SSSR 4, 240243 (English translation).
Soize, C. (2003), ‘Random matrix theory and non-parametric model of random uncertainties in vibration analysis’, J. Sound Vibration 263, 893916.
Soize, C. (2005), ‘Random matrix theory for modeling uncertainties in computational mechanics’, Comput. Methods Appl. Mech. Engrg 194, 13331366.
Soize, C. and Ghanem, R. (2004), ‘Physical systems with random uncertainties: Chaos representations with arbitrary probability measure’, SIAM J. Sci. Comput. 26, 395410.
Srinivasan, R. (2002), Importance sampling: Applications in Communications and Detection, Springer.
Stoyanov, M. and Webster, C. G. (2014), ‘A gradient-based sampling approach for stochastic dimension reduction for partial differential equations with random input data’, Internat. J. Uncertainty Quantification, to appear.
Sweldens, W. (1996), ‘The lifting scheme: A custom-design construction of biorthogonal wavelets’, Appl. Comput. Harmon. Anal. 3, 186200.
Sweldens, W. (1998), ‘The lifting scheme: A construction of second generation wavelets’, SIAM J. Math. Anal. 29, 511546.
Tartakovsky, D. M. and Broyda, S. (2011), ‘PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties’, J. Contaminant Hydrology 120/121, 129140.
Tatang, M. (1995), Direct incorporation of uncertainty in chemical and environmental engineering systems. PhD thesis, MIT.
Taylor, J. C. (1997), An Introduction to Measure and Probability, Springer.
Todor, R. A. (2005), Sparse perturbation algorithms for elliptic PDE's with stochastic data. Dissertation 16192, ETH Zürich.
Tran, H., Trenchea, C. and Webster, C. G. (2012), ‘Convergence analysis of global stochastic collocation methods for Navier-Stokes with random input data. Technical Report ORNL/TM-2014/000, Oak Ridge National Laboratory. Submitted to SIAM J. Uncertainty Quantification.
Traub, J. F. and Werschulz, A. G. (1998), Complexity and Information, Cambridge University Press.
Trefethen, L. N. (2008), ‘Is Gauss quadrature better than Clenshaw–Curtis?’, SIAM Review 50, 6787.
Tuo, R. and Wu, C. F. J. (2013), A theoretical framework for calibration in computer models: Parametrization, estimation and convergence properties. Technical report, Georgia Tech.
Ullmann, E. (2010), ‘A Kronecker product preconditioner for stochastic Galerkin finite element discretizations’, SIAM J. Sci. Comput. 32, 923946.
Ullmann, E., Elman, H. C. and Ernst, O. G. (2012), ‘Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems’, SIAM J. Sci. Comput. 34, A659A682.
Verfürth, R. (1996), A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley-Teubner.
Vick, S. G. (2002), Degrees of Belief: Subjective Probability and Engineering Judgment, American Society of Civil Engineers.
Wan, X. and Karniadakis, G. E. (2009), ‘Solving elliptic problems with non-Gaussian spatially-dependent random coefficients’, Comput. Methods Appl. Mech. Engrg 198, 19851995.
Wang, J. and Zabaras, N. (2005), ‘Hierarchical Bayesian models for inverse problems in heat conduction’, Inverse Problems 21, 183206.
Wasilkowski, G. W. and Wozniakowski, H. (1995), ‘Explicit cost bounds of algorithms for multivariate tensor product problems’, J. Complexity 11, 156.
Webster, C. G. (2007), Sparse grid stochastic collocation techniques for the numerical solution of partial differential equations with random input data. PhD thesis, Florida State University.
Webster, C. G., Zhang, G. and Gunzburger, M. (2013), ‘An adaptive sparse-grid iterative ensemble Kalman filter approach for parameter field estimation’, Internat. J. Comput. Math., to appear.
Wiener, N. (1938), ‘The homogeneous chaos’, Amer. J. Math. 60, 897936.
Winter, C. L. and Tartakovsky, D. M. (2002), ‘Groundwater flow in heterogeneous composite aquifers’, Water Resour. Res. 38, 23.
Winter, C. L., Tartakovsky, D. M. and Guadagnini, A. (2002), ‘Numerical solutions of moment equations for flow in heterogeneous composite aquifers’, Water Resour. Res. 38, 13.
Womeldorff, G., Peterson, J., Gunzburger, M. and Ringler, T. (2013), ‘Unified matching grids for multidomain multiphysics simulations’, SIAM J. Sci. Comput. 35, A2781A2806.
Xiu, D. (2009), ‘Fast numerical methods for stochastic computations: A review’, Commun. Comput. Phys. 5, 242272.
Xiu, D. (2010), Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press.
Xiu, D. and Hesthaven, J. (2005), ‘High-order collocation methods for differential equations with random inputs’, SIAM J. Sci. Comput. 27, 11181139.
Xiu, D. and Karniadakis, G. E. (2002 a), ‘Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos’, Comput. Methods Appl. Mech. Engrg 191, 49274948.
Xiu, D. and Karniadakis, G. E. (2002 b), ‘The Wiener-Askey polynomial chaos for stochastic differential equations’, SIAM J. Sci. Comput. 24, 619644.
Xiu, D. and Karniadakis, G. E. (2003), ‘Modeling uncertainty in flow simulations via generalized polynomial chaos’, J. Comput. Phys. 187, 137167.
Xiu, D. and Tartakovsky, D. M. (2004), ‘A two-scale nonperturbative approach to uncertainty analysis of diffusion in random composites’, Multiscale Model. Simul. 2, 662674.
Yuen, K. V. and Beck, J. L. (2003), ‘Updating properties of nonlinear dynamical systems with uncertain input’, J. Engrg Mech. 129, 920.
Zabaras, N. and Samanta, D. (2004), ‘A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes’, Internat. J. Numer. Methods Engrg 60, 11031138.
Zhang, G. and Gunzburger, M. (2012), ‘Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data’, SIAM J. Numer. Anal. 50, 19221940.
Zhang, G., Lu, D., Ye, M., Gunzburger, M. and Webster, C. (2013), ‘An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling’, Water Resour. Res. 49, 68716892.
Zhang, G., Webster, C., Gunzburger, M. and Burkardt, J. (2014), A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection. ORNL Technical Report.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed