Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 93
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Aràndiga, Francesc and Yáñez, Dionisio F. 2016. Non-consistent cell-average multiresolution operators with application to image processing. Applied Mathematics and Computation, Vol. 272, p. 208.


    Conti, Costanza Romani, Lucia and Yoon, Jungho 2016. Approximation order and approximate sum rules in subdivision. Journal of Approximation Theory, Vol. 207, p. 380.


    Conti, C. Gemignani, L. and Romani, L. 2016. Exponential pseudo-splines: Looking beyond exponential B-splines. Journal of Mathematical Analysis and Applications, Vol. 439, Issue. 1, p. 32.


    Ewald, Tobias 2016. Convergence of geometric subdivision schemes. Applied Mathematics and Computation, Vol. 272, p. 41.


    Ngondiep, Eric 2016. Distribution in the sense of eigenvalues of <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>g</mml:mi></mml:math>-Toeplitz sequences: Clustering and attraction. Arab Journal of Mathematical Sciences, Vol. 22, Issue. 1, p. 43.


    Novara, Paola Romani, Lucia and Yoon, Jungho 2016. Improving smoothness and accuracy of Modified Butterfly subdivision scheme. Applied Mathematics and Computation, Vol. 272, p. 64.


    Novara, Paola and Romani, Lucia 2016. Complete characterization of the regions of <mml:math altimg="si7.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> and <mml:math altimg="si15.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math> convergence of combined ternary 4-point subdivision schemes. Applied Mathematics Letters, Vol. 62, p. 84.


    Siddiqi, Shahid S. Salam, Wardat us and Rehan, Kashif 2016. Construction of binary four and five point non-stationary subdivision schemes from hyperbolic B-splines. Applied Mathematics and Computation, Vol. 280, p. 30.


    Siddiqi, Shahid S. Salam, Wardat us and Rehan, Kashif 2016. Hyperbolic forms of ternary non-stationary subdivision schemes originated from hyperbolic B-splines. Journal of Computational and Applied Mathematics, Vol. 301, p. 16.


    Calabrò, Francesco Manni, Carla and Pitolli, Francesca 2015. Computation of quadrature rules for integration with respect to refinable functions on assigned nodes. Applied Numerical Mathematics, Vol. 90, p. 168.


    Charina, Maria and Dahl, Geir 2015. Subdivision schemes, network flows and linear optimization. Advances in Computational Mathematics, Vol. 41, Issue. 3, p. 507.


    Dyn, Nira Heard, Allison Hormann, Kai and Sharon, Nir 2015. Univariate subdivision schemes for noisy data with geometric applications. Computer Aided Geometric Design, Vol. 37, p. 85.


    Hed, Sigalit Gjerdingen, Robert O. and Levin, David 2015. Pitch-and-rhythm interrelationships and musical patterns: Analysis and modelling by subdivision schemes. Journal of Mathematics and Music, Vol. 9, Issue. 1, p. 45.


    Mustafa, Ghulam Li, Hao Zhang, Juyong and Deng, Jiansong 2015. <mml:math altimg="si93.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-Regression based subdivision schemes for noisy data. Computer-Aided Design, Vol. 58, p. 189.


    Pellegrino, E. 2015. Numerical evaluation of new quadrature rules using refinable operators. Applied Numerical Mathematics, Vol. 90, p. 132.


    Romani, Lucia 2015. A Chaikin-based variant of Lane–Riesenfeld algorithm and its non-tensor product extension. Computer Aided Geometric Design, Vol. 32, p. 22.


    Romani, Lucia Mederos, Victoria Hernández and Sarlabous, Jorge Estrada 2015. Exact evaluation of a class of nonstationary approximating subdivision algorithms and related applications. IMA Journal of Numerical Analysis, p. drv008.


    Siddiqi, Shahid S. Salam, Wardat us and Rehan, Kashif 2015. Binary 3-point and 4-point non-stationary subdivision schemes using hyperbolic function. Applied Mathematics and Computation, Vol. 258, p. 120.


    Siddiqi, Shahid S. Salam, Wardat us and Rehan, Kashif 2015. A new non-stationary binary 6-point subdivision scheme. Applied Mathematics and Computation, Vol. 268, p. 1227.


    Aràndiga, Francesc and Yáñez, Dionisio F. 2014. Cell-average multiresolution based on local polynomial regression. Application to image processing. Applied Mathematics and Computation, Vol. 245, p. 1.


    ×

Subdivision schemes in geometric modelling

  • Nira Dyn (a1) and David Levin (a1)
  • DOI: http://dx.doi.org/10.1017/S0962492902000028
  • Published online: 01 January 2002
Abstract

Subdivision schemes are efficient computational methods for the design and representation of 3D surfaces of arbitrary topology. They are also a tool for the generation of refinable functions, which are instrumental in the construction of wavelets. This paper presents various flavours of subdivision, seasoned by the personal viewpoint of the authors, which is mainly concerned with geometric modelling. Our starting point is the general setting of scalar multivariate nonstationary schemes on regular grids. We also briefly review other classes of schemes, such as schemes on general nets, matrix schemes, non-uniform schemes and nonlinear schemes. Different representations of subdivision schemes, and several tools for the analysis of convergence, smoothness and approximation order are discussed, followed by explanatory examples.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Acta Numerica
  • ISSN: 0962-4929
  • EISSN: 1474-0508
  • URL: /core/journals/acta-numerica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×